SynthECA: A Synthetic Ecology of
Chemical Agents

by

Anthony R. P. White

M_.A. (Theoretical Physics),
Cambridge University, Cambridge, England
M.C.S. (Computer Science),
Carleton University, Ottawa, Canada

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute of Electrical and Computer Engineering
Faculty of Engineering

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario K1S 5B6, Canada

August 29, 2000

Copyright 2000, Anthony R. P. White

i

The undersigned recommend to the Faculty of Graduate Studies
and Research acceptance of the thesis

SynthECA: A Synthetic Ecology of
Chemical Agents

submitted by Tony White, M.A., M.C.S.
in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Chair, Department of Systems and Computer Engineering

§is Supervisor

Professor B. Pagure

Goop D S

External Examiner

Carleton University
August, 2000
ii

Abstract

Emergence, or self organization, is being increasingly associated with distributed or
decentralized problem solving. Naturally occurring systems demonstrate that complex
problem solving with simple agents is possible and that such systems are extremely robust
to changes in their environment and to the loss of individual agents. Furthermore, such
systems are self-managing, requiring no “blind watchmaker” to ensure that the system

operates efficiently.

Systems that depend upon the interaction of a large number of simple agents for their
problem solving properties stand in stark contrast to monolithic agent systems that have
been the target of considerable research. The frailty of symbolic systems, in the face of
unforeseen situations and the failure of individual agents provides motivation for the
research documented in this thesis. Social insect behaviour, and swarm systems generally,
provide the inspiration for the research described here as does the increasing importance

of activation-oriented computing.

This thesis proposes an agent architecture that relies on local communication only, all
algorithms having no knowledge of the global scene. The agent architecture is analysed in
terms of the requirements necessary to support emergent problem solving. The solutions
to problems in the Communications domain, specifically routing and fault localization,
demonstrate the utility of the proposed architecture along with algorithms that

demonstrate the self-management of agent swarms.

iii

Acknowledgements

A thesis is like a race, it has a beginning, middle and end with coaching a key to success.

I am fortunate to have been supported by a great set of coaches during my personal *race”.

I would like to thank my wife, Nikki, and boys, Colin and Andrew, for their tremendous
patience and support during the writing of this thesis. At times I am sure that they
wondered when, or if, [would finish. Without their encouragement I certainly would not

have done so. Their sacrifice, their understanding, made this document possible.

In all endeavours of this nature, the importance of a supervisor cannot be overstated. I
am extremely fortunate to have worked with Professor Bernard Pagurek, from whom I
have learnt more than is possible to document here. His willingness to let me find my own
way, while ensuring that wayward thinking was quickly corrected, ensures that I will
always be in his debt. My ability to undertake research owes much to his guidance and
tutelage. Finally, the trust that he placed in me to guide the research of other students has
given me a priceless confidence that I could not have expected to acquire as a graduate
student. I would also like to thank Andrzej Bieszczad, a good friend whose constant
cajolling and encouragement meant that I could never give up even when there appeared
to be no end in sight. His energy and constant positive review of my work ensured a timely
conclusion to this thesis. Finally, I would like to thank the members of the Perpetuum
Mobile Procura research group for their patience and for allowing me to participate in

their research. Examining your problems allowed me special insight into my own.

v

For Mike (1956-1999), a very good friend

Table Of Contents

Chapter 1 Motivations and Contributionccceeeveeeeeemerieeieeeeeeeecieneeeees 1
Overview I
Motivations 2

Decentralization 2
Agents and Architecture 5
Representations and Forms of COMPULation «....cecceceeverrmremmereeecee e 8
Contributions 10
Agent Architecture 10
Chemicals 10
Chemical Reactions 11
Migration Decision Functions 11
Synthetic Ecologies of Agents It
Demonstration of subsumption for SynthECA 12
Design of a mobile agent framework for SynthECA 12
Problem Solving Algorithms for SynthECA 13
Routing 13

Fault Location .13

Planning 13

Agent Density Control 14

Agent Upgrade 14

Thesis Organization 14

Chapter 2 Thesis background........c.cccueeueiiiiiiimieieieeeeeeeeeeeeeeeee e eeenes 17
Overview 17
Agents and Agent Architectures 20

Belief, Desires and Intentions 22
Subsumption 25
Hybrid .28
Interrap . 29
TouringMachine 31
Mobile Agents .. - 33
Multi Agent System Coordination, Communication and Control.......c..cccc.o..... 39
Market-based CONLTOL... ..ot ee e e s se e ereceecne e 40
Contract Net Protocol........ueecvecreeerreeemeevereeeeeeeeeen- 42
Knowledge Query and Manipulation Languagecccceoeeeeceercccrcnvcercennas 44
Blackboard Systems ...45
Reactive Tuple SPACEScemveeremeiceereeereeeeereneeeeeeeceacas 47
Swarm Intelligence «o.ocoeeeeeecvenieeeeee ...48
Ant Behaviors. 52
Ant foraging 53
Ant Brood Sorting55

vi

57

Wolves surrounding prey

Flocking behaviour 58

The Wave 59
Simulation of Swarms: StarLogo 60
Engineering Swarm Intelligence 61
The Ant System 62
Motivations for the Ant System 63
Applications of the Ant System 68

Ant System Summary 69
Autopoiesis 71
Chemical Abstractions 74
The Chemical Abstract Machine 75
Other Ideas from Chemical Computation 77
Adaptation and Learning 77
Genetic Algorithms 77
initializePopulation 81
evaluatePopulationFitness 81
randomRouletteWheel 81
Crossover. 82

mutate 83
Reinforcement Learning 83
Adaptive Heuristic Critic and TD(l) 84
Q-learning - 87
Discussion 88
Chapter 3 Biologically inspired Architectures for Mobile Agents 89
Overview 89
Emergent System: Principles and Mechanisms 91
Goals for and Attributes of a Self Organizing Agent System 95
Agent Size 95
Agent interaction 96
Agent Aggregation 97
Agent Scope 98
Agent Memory 99
Agent Diversity 100
Environmental Potential Fields 101
Introduction to Architectural Specification 104
Agent System Architecture 105
Chemicals and the Chemical Universe......cooocveeecrincvnniiniinnen 108
Emitters «.ocoeeeeeevccenneee. 113
Receptors 113
Chemistry 114
Memory eeeeeeeseesssaneerannaeaeaanes 119
Migration Decision Function.........c........ 119
ANt ACHON PriMItIVESeeeeeeeeeeeeeeeceecceecceecceceneeseeesecrressesansseseessecmen ma e e snenes 120
Observations of the SynthECA Architecture 121

vil

Agent Operation
Agent Design

Agent Lifecycle
SynthECA Scenario

Agent Classes

Implementation
Results and Discussion

Summary

127
128
132
134
135
140
140
143

Chapter 4 SynthECA agents for Management and Control in Networks 145

Overview

Introduction

Motivations

Problem Description

Description of the Algorithm

Point to Point Routing
Multiple Point to Point Routing

Point to Multi-point Routing
Cycle (or Multi-path) Routing

Detailed explorer agent rules of behaviour
Experimental Results

Further Enhancements to the Basic Algorithm

Introduction

How agents choose the next link

Pheromone.

Source and Destination Nodes

Point to Multi-point Connections
Agent Species

Load Balancing

The Genetic Algorithm-like approach
Experimental Setup

Results for Problem 1
Results for Problem 2

Results for Problem 3.
Load Balancing Experimental Results

Other Algorithm Improvements

Sensitivity to Parameters
Orders of Magnitude

Complexity
Application Oriented Routing

The Model

Experimental Setup.......cooeeveieereeerveenenne.

Results and Discussion
Multi-priority Routing

145

145
146

.148

150
151
153
153
154
155
159
163
163

.164

165

.166
.167

167

.168

169
173

175
.178

179

.181

187

187
.189
...190

190
191

195

197
200

201

Adding a Priority Pheromone

viil

Using Pheromone Decomposition 204

Using SynthECA Routing Agents on Real Networks 205

SynthECA in the Network 206

SynthECA in the Management System 208

Summary 209

Chapter 5 Distributed Fault Location Using SynthECA Agents 211
Overview 211

Introduction 212

Service Dependency Modeling 215

Agent System Architecture 216

Agent Classes 217

Problem solving by agents 222

Results 229

Interaction with the Routing System 231

Summary 234

Chapter 6 Management of Distributed AZEntscceeeeeeieeciieiciiicnnennnnee 236
Overview . 236

Density Control 238

Results 241

Agent Upgrading .247

Agent Upgrading Results 250

Summary 255

Chapter 7 Conclusions and Future Workcccccooiiiiiiiiiiiiiiiiniiinnenn. 257
Introduction 257

Future Research 259

Search teChRIQUES c. et ccs e e mnenas 259

Other Applications Areas 260

Alarm Correlationcooeeccceeneececeeae. 260

World Wide Web 262

Open Chemistry Research 263

Learning . . 264

Theory 265

Summary 266

Appendix Swarm Simulation Environment ...c.....ccocoeiiiiiiiiiiinniiieennnnnnn. 279
Appendix SynthECA Implementationccccooooviiieeiiiiinreiciemmeneccaenenn 288

X

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

FIGURE 8.

FIGURE 9.

FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.
FIGURE 22.
FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.
FIGURE 32.
FIGURE 33.
FIGURE 34.
FIGURE 35.
FIGURE 36.
FIGURE 37.
FIGURE 38.
FIGURE 39.
FIGURE 40.

List of Figures

Agent Black Box Architecture

Agent Processing Stages

The Belief Desires and Intentions Agent Architecture

BDI Architecture

Subsumption Architecture
Example layers in a subsumption architecture

Interrap Architecture

Layer connectivity in TouringMachines

Mobile Agent Architecture

Multi Agent System cooperation and Control Taxonomy

The Contract Net Protocol

Example Contract Net Protocol Interaction

Example KQML
The BBI1 Blackboard Architecture

Shortest Path Emergence
Pheromone Trails

Examples of schema

Population Roulette Wheel
Crossover in action

Reinforcement Learning Agent
Adaptive Heuristic Critic Architecture

Aggregation using CHAM-like principles

Macro Organization through Micro Dissipation
Examples of Cell Types

Layered Architecture for SynthECA Agents
Type 3 Reaction Example ..

A Cellular Autopoietic Network

Aggregation facilitated by chemical interaction
Agent Architecture and Interactions

Agent-Environment Coupling...

Agent Lifecycle
Example Fault Localization

A Network Connection

Point to Point path....c.cccceecreeeccceceeeenn.
Point to Multi-point path

Cyclical path
Initial Test Network

Link Cost Functions

Mathematical Cost Functions ...

An example of Crossover

FIGURE 40.
FIGURE 41.
FIGURE 42.
FIGURE 43.
FIGURE 44.
FIGURE 45.
FIGURE 46.
FIGURE 47.
FIGURE 48.
FIGURE 49.
FIGURE 50.
FIGURE 51.
FIGURE 52.
FIGURE 53.
FIGURE 54.
FIGURE 55.
FIGURE 56.
FIGURE 57.
FIGURE 58.
FIGURE 59.
FIGURE 60.
FIGURE 61.
FIGURE 62.
FIGURE 63.
FIGURE 64.
FIGURE 65.
FIGURE 66.
FIGURE 67.
FIGURE 68.
FIGURE 69.
FIGURE 70.
FIGURE 71.
FIGURE 72.
FIGURE 73.
FIGURE 74.

An example of Mutation

171

Experimental Network | 173
Experimental Network 2 174
Example Factor Calculation 184
T-factor gain calculations 185
Results for T-variation 186
Example Network Fragment 192
Average Qos Example 1 198
Average Qos Example 2 198
Average Qos Example 3 199
Example of Multi-priority Routing 200
An example virtual network 215
A Sensor Agent talks to an SNMP Agent 219
Localization of a Fault by Chemical Interference 221
Example Network 229
Fitness results 230
Variation of Performance with Number off Agents 231
Before and After routes for n3 ‘Failure’ 233
Agent Management Graph 1 241
Agent Management Graph 2 ..242
Agent Management with Transient Initialdzation for Graph [243
Agent Management with Transient Initialization using 6 agents for Graph 1............... 244
Agents Injected after Settling Period for Graph 1 245
Agents Destroyed after Settling Period fomr Graph 1 246
Corrected Agent Replaces Flawed Agent 250
Corrected Agent Replaces Flawed Agent _After Re-injection 251
Perfected Agent Replaces Flawed Agent and Corrected Agent 252
Perfected Agent Replaces Flawed and Conrected Agents After Re-injection 253
Simulation Main Window ... 280
Experiment Manager Dialog..... 282
Connections Notebook.............. 283
Links NOEDOOK. ..comeemeceeeeee e eeiee eenencceeceseseenmasrncesomem s ssencsses s emnnnne 284
NOdes NOEDOOK eneeeciieciiieiertirre e e ecerceaeecesecoeseeencsen st snsssnnenens 285
Simulation Control .286
OULPUL DISPLAYS oottt cterccerees e o aace s et re s enesessesssssssss mbmssasasessnsnnnnes 287

X1

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLES.
TABLE 6.
TABLE 7.
TABLE 8.
TABLES.
TABLE 10.
TABLE 11.
TABLE 12.
TABLE 13.
TABLE 14.

List of Tables

Simulation Parameters
Results of Initial Experiments

Routing Results: Problem 1, 0% Utilization, o constant

Routing Results: Problem [, 30% Utilization, af§ constant
Routing Results: Problem 1, 50% Utilization, of} constant

Routing Results: Problem 1, 0% Utilization, «ff adaptive
Routing Results: Problem 1, 30% Utilization, aff adaptive
Routing Results: Problem 1, 50% Utilization, of adaptive

Routing Results: Problem 2, 0% Utilization, oo} constant
Routing Results: Problem 2, 0% Utilization, o adaptive

Routing Results: Problem 3, 0% Utilization, o8 constant

Routing Results: Problem 3, 0% Utilization, o8 adaptive
Increasing QoS transformation rules

Decreasing QoS transformation rules

X1l

159
160
176
176
176
177
177
177
179
179

.. 180

180
194
195

CHAPTER 1 Motivations and Contribution

1.1 Overview

This chapter provides motivations for the contributions made by this thesis. A statement
of the problem area considered in this thesis would be: distributed problem solving using
mobile agents. The goal of this chapter is to have the reader understand the path the thesis
will follow, the importance of the problems solved, and why the ideas form a cohesive
structure from which the thesis contributions naturally emerge. Emergence will be a word

seen many times in this document and is carefully chosen. As a concept, it is central to the

ideas presented here.

Emergence is being increasingly associated with distributed or decentralized problem
solving. The pervasive nature of decentralized systems, and their most compelling
characteristics, are outlined in the next section. Agents, natural instruments for distributed
problem solving, have recently been proposed as a natural evolution of the concept of an

object, although no single universally accepted definition of an agent yet exists. A section

Motivations and Contribution

on agents, or more specifically agent architecture, motivates the need for less brittle, more
natural implementations. The word nature is carefully chosen here as this thesis appeals to
naturally-occurring multi-agent systems for inspiration and as providing proof by
existence of the value of such systems in the natural order. The section on agents
highlights the problems of many of the existing architectures in terms of their knowledge

representation and forms of computation.

Representation implies bias. It is clear that digital circuits and electronic signals are not
the only means for implementing computers and performing computation. While our
thinking has been dominated by Turing and Von Neumann views of computers and
computation, other ideas and computational processes have recently challenged views
previously thought unimpeachable. A section on forms of computation enhances the

motivations for alternative agent architectures outlined in the agent section.

Motivations form the basis for contributions; i.e., statements of problems provide
opportunities for solutions and these are provided in section 1.3 of this chapter. The

chapter concludes with a review of the organization of the thesis.

1.2 Motivations

The motivations for this thesis broadly fall into three categories: decentralization, agent
architectures and forms of computation. These categories are described in the following

three sub-sections.

1.2.1 Decentralization
We live in an age of increasing decentralization. Why is this so? What makes

2

Motivations and Contribution

decentralized systems so attractive? Decentralized systems are pervasive, we find them at
all levels in society, in naturally-occurring and economic systems and, increasingly, in
theories concerning knowledge and self [Minsky 88]. It would seem that we have entered

the “ ... era of decentralization” [Resnick 94].

The rise of decentralization in society can be seen in the growth of democracy world
wide, where decision making in terms of leadership is distributed to a large number of
society’s members. Decentralization in society also spans organizations; companies have
increasingly moved decision making to lower levels in their structures, favouring instead
contract-style interactions between sub groups in order to achieve a particular
organizational goal. As examples of organizational decentralization we see the rise of
quality circles within manufacturing industries, worker control of production lines,
elimination of layers of management in many industries and moves towards matrix rather
than hierarchical structuring of labour. In the economic area, we see the failures of
centrally-planned economies and the move to the free market economy, with price, and the
supply and demand of goods providing the driving forces for a decentralized control

system.

Decentralization in naturally occurring systems can be found in many systems, spanning
all levels of evolutionary complexity, from bacteria to ants and beyond. In such systems,
the concept of societies exists; identifiable groups that collaborate in order to achieve
some goal. The function and importance of societies will be re-visited later in this chapter.

In fact, considering a society as a species, we may think of evolution itself as a

Motivations and Contribution

decentralized process; we do not need to invoke some “Blind Watchmaker” in order to
have an evolutionary process or system. In fact, Darwin’s theory of evolution requires no
centralized planner, no overseer to ensure that evolution will occur. It merely relies on
environmental change and the fact that effective characteristics in one environment may
be a poor choice in another. In other words, it relies upon competition, an inverted form of
collaboration. Stated another way, flippers may be an advantage when a watery
environment exists but certainly do not provide the best form of locomotion when solid
ground dominates the landscape. Dynamic fitness landscapes have a dramatic effect on the
complexity and stability of systems [Seth 98]. We shall return to ecosystems and their

characteristics later in this chapter.

Decentralization can be seen in theories of Knowledge. The growth in interest in

Semiotics, where the observer must be considered part of the theory, implies distributed

knowledge as, by necessity, all observers cannot occupy the same place at the same time!.
Simply put, knowledge is distributed in multiple observers of the system. More recently,
the prevailing views in Physics have associated increasing importance with the concept of
information and the realization that observations include the observer. Fisher information
subsumes Shannon information and Boltzman entropy in order to explain many

fundamental physical principles; e.g., Einsteins’s Field equations and Quantum Gravity.

Decentralization, then, is truly pervasive. This thesis takes decentralization as a

motivating principle; i.e., the removal of all global state from the problem solving process.

1. Even if they did. they still would not have the same sensors.

4

Motivations and Contribution

1.2.2 Agents and Architecture
If we trace the origins of the concept of an agent in the body of work we could call

Software History, we find that, originally, the basic software unit was the program.
Program control was achieved by jumping from one location in the program to another.
All state was global and a single thread of control existed. Structured programming was
then developed, where segments of code were encapsulated, local state provided and the
subroutine invoked through an external call. The concept of a structure was created. This
phase in the history of software was a short one, as it was quickly realized that structures
and behaviour (subroutines) were not integrated. This discontinuity in representation led
to the programming paradigm that we now know as Object Oriented programming (OOP).
Although OOP added other concepts such as inheritance and polymorphism, objects were
still passive; messages being sent to an object as a consequence of the activities and

actions of an external entity. Objects, in general, do not have their own thread of control.

The passive nature of an object and the overseer style of control implied centralized
problem solving. A natural evolution of the concept of an object then occurred wherein an
individual thread of control became associated with it and, along with a control element,
internal goals. The agent concept was born. This fairly minimal definition of an agent as
“an active object with initiative” [Parunak 98] i.e., having localized code, state and
control, making application design the process of agent design plus agent coordination.
Essentially, agent oriented systems differentiate between two forms of communication:
internal and external. Internal communication is generally directed from one object to

another. External communication concerns itself with agent coordination.

5

Motivations and Contribution

The appeal of agent architectures exists because of the promise of populations of agents:
organizing themselves without an overseer controlling element. Even more importantly,.
such populations should be able to react to dynamically changing environments and cope:
with unforeseen situations. At first glance, agents are extremely appealing because they
reduce the number of behaviours in the active object and, therefore, the potential for

unexpected interactions.

Achieving robust agent system behaviour has proven elusive. Why is this? History and
origins are, as one might expect, to blame. Firstly, agent system research originated with
the Artificial Intelligence (AI) community, a community grounded in the symbolic view of”
the world. The Al community has been strongly influenced by the Symbol Hypothesis
[Newell 80] and first order predicate logic. The Resolution Principle [Robinson 65]
entrenched the importance of symbols and theorem proving. Unfortunately, this approach
has several limitations that will described in the next section. However, symbolic systems
coordinate their activities by exchange of symbolic information and theorem proving.
Ordering of symbolic information, and the (almost universally) non-monotonic nature of
temporal reasoning makes it very hard to achieve reliable coordination. What happens if
an agent dies, or communication proves unreliable? Also, either point to point
communication is employed or some communications ‘“centre” where messages are
“appropriately routed” to interested parties is implied. This latter option smacks of
centralization, thereby re-introducing many of the problems of monolithic behaviour
present in pre-OOP systems. Symbolic communication also relies upon the existence of

rich ontologies in order that meaning can be made universally accessible. So, is there an

6

Motivations and Contribution

alternative?

Naturally occurring systems of simple agents (such as populations of insects or other
animals) offer considerable evidence that centralized, pure symbol processing agent
systems are unnecessary. The key word is simple. Agents need not be rational by necessity
for complex problems to be solved. A crucial observation is that agents are situated, they

cannot be considered independently of their environment. In fact, the environment is the

communications medium' and that agents sense only locally-available information in that
medium. The lack of a global overseer is evident in naturally occurring systems. In
observing that local sensing of information can be sufficient, it is important to understand
what other characteristics allow much simpler agents to succeed where more complex
systems have difficulty. Two characteristics of naturally occurring multi agent systems
that facilitate complex problem solving are: population-based problem solving with the
actions of single agents reinforcing each other and agent mobility driven by some signal
gradient within the environment. These, and other important characteristics of naturally
occurring multi-agent systems, will be discussed at length in the next chapter. The Ant
System, a class of search algorithm based upon the foraging behaviour of ants is described

there.

Our motivation, then, is the relative lack of success of the robust coordination of
symbolic, rational agents in complex, distributed problem solving and the success of

societies of simple naturally occurring agents in complex problem solving. We are

1. As Marshal McLuan put it, “The medium is the message.”

7

Motivations and Contribution

motivated to exploit synthetic ecosystems and exploit societies of simple agents. This
thesis also observes the lack of research progress is the area of fault tolerance; i.e. the
ability of agent systems to deal with the failure of groups of agents. A related problem --
failure on the logical level — concerns the need to upgrade agent behaviour because of

observed deficiencies in current performance.

1.2.3 Representations and Forms of Computation
The previous section alluded to problems of representation in agent knowledge and

reasoning with that knowledge. Firstly, a symbolic view of the world, with knowledge
represented as well formed formulae and manipulated using first order predicate logic has
a fundamental problem: not all properties of a system may be inferred using it [Gddel 31].
Secondly, and far more importantly from a practical perspective, representing dynamic
environments results in the Frame problem; a problem that arises as a consequence of the
need for specifying state and state transitions. Symbolic systems cannot be situated, as we
do not live in a symbolic world; translation from measured data to symbolic representation

has to take place. This process results in a further problem, that of sensor fusion.

Connectionist systems, or activation-oriented systems, represent a contrasting style of
knowledge representation and reasoning. While avoiding the Frame and Sensor Fusion
problems, they suffer from the problem of identification of where knowledge is actually
stored. As such, the reasoning process; namely, spreading activation, is difficult to follow
and makes an explanation of system activity hard to extract. It is this desire to synthesize

symbolic and activation-oriented system representations within a distributed problem

Motivations and Contribution

solving framework that motivates the research in this thesis. The question is how to

achieve synthesis?

While representation and reasoning influence the way the world is modelled and
perceived, the underlying style of computation is the same. Styles and theories of
computation have long been dominated by the ideas of Turing and Von Neumann. Until
recently, these ideas were thought to be unimpeachable. In the 1990’s, the landscape of
alternate forms of computation has widened considerably. Firstly, in 1994, Leonard
Adelman published a paper in Science describing the “Molecular Computation of
Combinatorial Problems.” While the Belousov-Zhabotinski reactions had clearly
demonstrated that spatial and temporal self organization could produce striking physical
effects, potentially being useful as information-processing vehicles, Adelman’s work
demonstrated actual computation; a DNA computer had been constructed. Arguably, this
work can be traced back to Turing’s work on Reaction-Diffusion systems and their
acknowledged value as information processing systems. Secondly, and coincidentally also
in 1994, Shor published a paper entitled, “Algorithms for quantum computation: Discrete
logarithms and factoring” wherein an algorithm for factorization of a polynomial using a
quantum computer was described. This was important because it demonstrated that the
Quantum Computer - proposed by Deutsch in 1985 -- could do something useful.
Quantum Computing was born. In both of these developments we observe massive
parallelism with no central coordination. In a DNA computer we see huge numbers of
molecules interacting in parallel. In a quantum computer, the interaction of countless

quantum states is used to solve a problem.

Motivations and Contribution

Both forms of computation rely on a form of reaction and local interaction. In the case of
a DNA computation, a reaction is directly observable. In the case of quantum computing,
the reactants are quantum states and reactions are the time evolution of the supposition of
those states. A reaction has two important characteristics, those of symbol transformation
and activation spreading through chemical concentration. Given these observations, and
the proven utility of the computational power of chemical systems, we are motivated to

use it as a basic block in the computation performed by an agent.

1.3 Contributions

The motivational principles outlined in the previous section drive contributions claimed

for this thesis. They are described in the following sub-sections.

1.3.1 Agent Architecture
This thesis proposes an agent architecture that supports distributed problem solving

using mobile agents. Problem solving is an emergent property of the system, no single
agent is allocated the task of solving a given problem. The problem solving process is
driven by the positive feedback (reinforcement) of the actions of many simple agents. The
agent architecture explicitly includes the migration strategy of the agent and is strongly

influenced by chemical communication in insects.

The contributions in the areas of architectural components are outlined in the next three

subsections.

1.3.1.1 Chemicals
The most important contribution of this thesis is the synthesis of activation-oriented

10

Motivations and Contribution

systems and symbol re-writing systems. This synthesis takes place in the idea of a

chemical object: a symbol with floating point value - its concentration.

1.3.1.2 Chemical Reactions

While the chemicai provides a concept that aiiows for symbolic representation of state,

transformation of symbols occurs through reactions. These reactions implement a symbol

re-writing system and, being active!, cause transformations to occur in parallel,
consequently ensuring that an agent is not biased toward any particular implementation of
that computation. We believe this contribution, along with that of the use of the chemical

concept, to be the most important in the thesis.

1.3.1.3 Migration Decision Functions
Although a great deal of research has been undertaken in the area of mobile agents, little

or no attention has been focussed upon the formal specification of the itinerary associated
with a mobile agent. Specifically, there has been no linking of the environment to the
migration decision function in the way proposed by this thesis. Further, the identification
of the value of societies of agents and the importance of mobility in distributed problem
solving is captured in the migration decision function and the chemical communication

interaction model proposed in this thesis.

1.3.2 Synthetic Ecologies of Agents
As stated previously, agent based systems have traditionally exploited rational agents --

agents with a knowledge of self and identifiable goals and beliefs -- in their problem

I. A reaction may be thought of as a daemon or thread.

11

Motivations and Contribution

solving processes. This thesis contributes to the on-going debate of agenthood by
demonstrating that by engineering ecologies of agents, simple non-deliberative agents can
successfully solve complex problems. This thesis demonstrates that models of agent
behaviour taken from naturally occurring multi-agent systems can be exploited
successfully in network problem solving, the interaction with the environment being key
to its success. SynthECA - synthetic ecologies of agents - represents an approach to
agent system design wherein agents are simple, the environment is closely coupled with

the agents themselves, interactions are local and no global state is assumed.

1.3.3 Demonstration of subsumption for SynthECA

Previous multi-agent system work has focussed on groups of agents solving a single
problem within a specific domain, although layered architectures have been proposed
where problems of increasing abstraction are addressed [Hayzelden 99]. These
architectures, in so far as they have been used, have hard-wired connections between
layers of the architecture and that connections are internal, not external. However, this
thesis demonstrates the use of a subsumption architecture [Brooks 86], [Brooks 91] for a
synthetic ecology of agents where there are no hard-wired interactions between
architectural layers; interactions occurring through the environment using chemicals as

the inhibitory or excitatory stimuli.

1.3.4 Design of a mobile agent framework for SynthECA

This thesis provides a design for SynthECA agents, extending an existing mobile agent

framework, with the most important element being the mechanism for communication of

12

Motivations and Contribution

chemical concentration changes. A reactive tuple space implementation is proposed for
the local environments used in SynthECA, the design being strongly influenced by
LINDA [Gelernter 86] and more recent developments of it used in the Mobile Agent

community [Cabri 00].

1.3.5 Problem Solving Algorithms for SynthECA
Any architectural specification without demonstration of its utility in the context of

problem solving in some domain is of limited interest. This thesis contributes a number of

algorithms for problem solving in the five areas described in the following sub-sections.

1.3.5.1 Routing
Routing without knowledge of network topology is a hard problem, made more complex

when constraints on the route to be taken are added. This thesis provides algorithms for

point-to-point, point-to-multipoint, and shortest cycle using SynthECA agents.

1.3.5.2 Fault Location
Components responsible for degraded performance are difficult to find in networks. This

thesis proposes simple algorithms for fault localization based upon hill climbing in the
space of chemicals deposited in the environment. Learning based upon heuristics and

reinforcement learning techniques are proposed.

1.3.5.3 Planning
Realizing when a network needs to be re-planned or a transient fault exists in the

network is a hard problem. This thesis proposes a number of simple algorithms that deal
with the identification of unreliable components and congested regions of the network

13

Motivations and Contribution

which should be re-planned.

1.3.5.4 Agent Density Control
If mobile agent systems are to be self organizing, the problem of self regulation of agent

density needs to be addressed for societies of agents. Algorithms are proposed for the self-
maintenance of agent density that are loosely based upon Lotka-Volterra dynamics of

predator prey systems.

1.3.5.5 Agent Upgrade
If mobile agents are to be permanently deployed in networks and circulate continuously,

it is certain that evolved behaviour will be required after some time. This presents three
problems. Firstly, how can an agent with the updated behaviour be injected into the
network and replace the current agent? Secondly, how can the new agent know that it has
subsumed the responsibilities of the previous version of the agent? Finally, how can a

previous version of an agent be prevented from re-asserting itself in the network?

This thesis proposes algorithms that address the above problems.

1.4 Thesis Organization

The remainder of this thesis consists of six chapters. Chapter two provides a wide range
of background material upon which this thesis is based. Agents, their mobility and forms
of communication figure prominently in this chapter as do examples of naturally-

occurring systems exhibiting complex problem solving with purely local interaction.

Chapter three presents an agent architecture that is biologically-inspired and based upon

14

Motivations and Contribution

a new problem solving paradigm, that of mobile agents. It analyses the essential
characteristics of self organizing systems and demonstrates how the proposed architecture

supports emergence.

Chapter four applies the agent architecture of the previous chapter to the problems of
routing in networks, including point to point, point to multipoint and protected path
routing. The chemical formulation of the previous chapter is applied to demonstrate how
multi-priority routing can easily be achieved. Finally, an algorithm that demonstrates how
applications with complementary statistical properties can leamn to share the same path is

presented.

Chapter five provides a fault localization learning algorithm using the architecture of
chapter three and couples it with the algorithms presented in chapter four, thereby
demonstrating a simple subsumption architecture. The algorithm uses Q-Learning in
conjunction with chemical gradient following in order to determine where faults are
located. Upon successful diagnosis of the fault, feedback is provided to the environment in

order to have future connection requests avoid unreliable components.

While mobile agent systems are appealing for the management of networks, they present
management problems of their own. Chapter six discusses the mobile agent management
problems from a resource and functional statement, presenting algorithms for the solution
of agent density and agent upgrade problems. Issues of mobile agent security are not

discussed here as they are well-addressed elsewhere. See, for example, [Mole].

All works of this kind generate as many questions as they provide answers; this thesis

15

Motivations and Contribution

being no different in that regard. In fact, given the wide-ranging synthesis of ideas
presenting in the chapters that follow, the body of future work that remains is vast. The
conclusions chapter of this thesis provides a number of dimensions to the work that should
follow, spanning theory, practice and application. We believe that this thesis takes a single
step on a very long journey. However, we believe that many giant strides can be taken by
exploitation of ideas from the theoretical work of Prigogine, Eigen, Schuster and others

along with the practical research of the rapidly-growing Mobile Agent community.

16

CHAPTER 2 Thesis background

2.1 Overview

This thesis, as is the case for all theses, builds upon the work of others. This chapter
introduces material upon which the contributions of this thesis are built and places
relevant material in a context where the work reported here is clearly an extension or
synthesis of previous ideas. The objective of this chapter is to have the reader understand
the areas of knowledge and ideas that contribute to the research reported in this thesis and

how they relate to one another.

In order to understand the relevance of the background material, we must first re-iterate
aspects of the objectives for the thesis. First, as we have seen in the previous chapter,
symbolic multi-agent systems suffer from a number of limitations that betray their origins
in Artificial Intelligence. Agents in such systems are rational, having a knowledge of self
and a set of goals and beliefs. Limitations of symbolic multi-agent systems include a lack

of robustness with respect to individual agent failure, difficulties in dealing with the

17

Thesis background

Frame problem (i.e., dynamic environments), and problems related to agent coordination.
Second, the power of mobile agents as the primary entities in a new distributed problem

solving process has yet to be realized.

This chapter first provides a definition of an agent and describes several of the more
important agent architectures, choosing the reactive/planning nature of the architecture as
discriminant. A section is then provided that reviews several of the more significant agent
coordination and control mechanisms that have been developed. Having introduced
agenthood in the context of classical symbolic agents, a section then introduces systems
that exhibit collective (or swarm) intelligence and where problem solving is considered an
emergent property of the system. Systems exhibiting collective intelligence often rely
upon mobility and local interaction for their problem solving capabilities and thus it seems
natural that the next section should describe the ongoing research into Mobile Agents. By
doing this, the ideas of societies of agents and technological exploitation of those ideas are

demonstrated.

Being a thesis, and one provided in support of the awarding of a doctor of philosophy
degree, it seems appropriate to provide philosophical underpinnings of the ideas presented
in later chapters. We do this by briefly describing the work of Varela and Maturana; in
particular, the concepts of Autopoiesis and Autonomy. These ideas are important and
receiving increasing attention within the Systems Science and Artificial Life communities
in that they provide a holistic view of systems and specifically an understanding of the

cognitive properties of living systems and societies of agents.

18

Thesis background

Having appealed to the use of simple, biologically inspired agents and, having noted the
existence of alternative forms of computation in chapter 1, research in the area of chemical
forms of computation is then presented. This section brings together several pieces of
work, spanning Theoretical Computer Science, Theoretical and Algorithmic Chemistry
and Self Organizing Systems. The section on Chemical Computation is arguably the most
important for understanding the ideas presented in the chapters which follow. Finally, a
section on adaptation and learning briefly reviews techniques which are used to enhance
the performance of several of the algorithms presented in later chapters. While adaptation
and learning are not central to the contributions made by this thesis, it is intended that this
work form the initial study of synthetic ecologies of chemical agents, where agents have
fixed chemical constitutions. Future work would allow for evolution of agent constitution
using, for example, techniques taken from research into Evolutionary Computation (EC)

such as Genetic Algorithms (GAs) or Genetic Programming (GP).

Finally, a section provides a summary of the research described in the chapter and how it

relates to the chapters that follow.

19

Thesis background

2.2 Agents and Agent Architectures

(perception) (action)
FIGURE 1. Agent Black Box Architecture
Figure 1 shows the black box architecture of an agent. Agents are considered to be
perception - action entities and are active, having their own independent thread of control.
Before introducing background knowledge relating to agents and their architectures, it
would seem appropriate to define the essential characteristics of an agent. Unfortunately,

no universally agreed definition exists. However, the following characteristics are

generally agreed upon as being either mandatory or optional:

e Something that can act on behalf of others.

» [s social, capable of meaningful interaction with other agents (and humans).

e Can make decisions on our behalf.

e Is capable of adapting to changing environments and learning from user interaction.
e [s capable of dealing with unexpected situations.

e [Is mobile.

A possible definition has been given as:

“An intelligent software agent is defined as being a software program that can per-

form specific tasks for a user and possessing a degree of intelligence that permits it

20

Thesis background

to perform parts of the tasks autonomously and to interact with its environment in
a useful manner” [Brenner 98].

An agent, regardless of definition, has three processing phases as shown in Figure 2. The
interaction box to the left of the figure represents the actual measurement of some set of
aspects of the environment. Processing of this raw input then occurs. First, various sensory
inputs from the environment need to be transformed and fused in order to provide input to
the information processing component. The information processing component performs
whatever reasoning (simple or complex) that is appropriate for the agent in its intended
problem domain. The reasoning mechanism depends heavily upon the input it receives.
For example, in a symbolic problem solving domain, the information processing
component might use forward chaining as a reasoning process, abductive reasoning or an
assumption based truth maintenance system (ATMS). In a connectionist agent, a neural
network might be used to implement the reasoning process. The result of information
processing is a view of the world consistent with the measurements made in the
environment. The action module in an agent is responsible for selecting an activity -- a
sequence of actions -- that should be undertaken in the environment in order to achieve a

particular goal or move the agent closer to the achievement of a longer term objective. The

Information
processing

Information
fusion

Input Output
(perception) (action)

FIGURE 2. Agent Processing Stages

Interaction

Interaction

21

Thesis background

representation chosen for the action selection module depends heavily upon the output of
the information processing module and, in most cases, uses a similiar representation to it.
Hybrid symbol-neural network architectures are rare. The interaction element to the right
of Figure 2 represents the conversion of an activity selected by the action mobile into a

change in the environment; e.g., moving a leg for a robot.

The following sections present a number of significantly different views of an agent

with respect to the processing that it performs in order to select an action.

2.2.1 Belief, Desires and Intentions

Intentions

Knowledge
Beliefs
Plans

FIGURE 3. The Belief Desires and Intentions Agent Architecture

The Beliefs, Desires and Intentions (BDI) architecture shown in Figure 3 is a symbolic
architecture due to Georgeff and Rao [Rao 95]. Agents of this type are deliberative and
possess a symbolic model of their environment. Beliefs contain the fundamental views of
an agent with regard to its environment. An agent uses them to express the expectations of

possible future states. Desires are derived from beliefs directly. They contain judgements

22

Thesis background

of future situations. An agent might, for example, have the desire that a future state occur
but another does not. An agent with its formulation of desires has not made any statement
on the extent to which these desires are realistic. For example, I may desire to purchase an
expensive car (e.g., a Ferrari) but I have yet to acquire sufficient price information and
money in order to realize that desire. In other words, an agent may have an unrealistic
desire, even though it knows that it may never occur. Conflicting or contradictory desires

are possible.

The goals of an agent represent that subset of the agent’s desires on whose fulfillment it
should act. In stark contrast to its desires, an agent’s goals must be realistic and cannot be
contradictory. They must be realizable within the processing scope of the agent because
they represent those processing alternatives available at a specific time and must be dealt
with within a certain window of opportunity. Intentions represent a subset of goals. If an
agent decides to follow a specific goal, this goal becomes an intention. An agent may not
possess sufficient resources to follow all goals simultaneously, it must assign priorities to
outstanding goals and process them accordingly. Finally, plans combine the agent’s
intentions into consistent units. Obviously, there is a close connection between intentions
and plans: intentions form the sub-plans within an overall agent plan. The interation of

BDI elements implies a basic architecture for such an agent and this is shown in Figure 4.

The agent’s knowledge base is its symbolic view of the environment. The desires, goals
and intentions are derived from the knowledge base. This activity is performed by the

reasoner, thereby making this a centralized problem solver. The planner takes the

23

Thesis background

- < Executor Scheduler Plamner
1

A

= ! |
-g \ d Intertions
& Goals
E | Manager)« Reasoner [+
L 1 Dessires
"E / t \ 7y
=
Information | | Knowledge base
receiver Symbolic environmemt model
Output
(action)

FIGURE 4. BDI Architecture

intentions and combines them into a consistent overall plan. Naturally, this is a dynamic,
incremental process. The planner tests new intentions for dependencies withe existing sub-
plans. It may be the case, for example, that the results of an intention may represent the
input values of another intention -- a strong dependency. The planner rescognizes and
makes allowances for this form of dependency. Existing plans are continualily adapted to

situations that result from the arrival of new intentions.

The scheduler receives the current plans from the planner. Every plan consists of a
number of “atomic” actions that must be processed either sequentially or in. parallel. The
scheduler’s job is to decide when specific actions are to be made available ffor execution.
In order to do this, it needs a continuous overview of the resources availables to the agent.

The scheduler assigns an optimum and latest execution time to every action. The

24

Thesis background

scheduler also specifies details on the maximum runtime and resource usage. In this
regard, it performs very similiar functions to those of an operating system process

scheduler.

This information is passed along with the action to the executor module. The executor
executes the next outstanding action, monitors its correct processing and terminates its
execution. The executor can terminate an action if it requires more computer time than
provided by the scheduler. The executor returns the action to the scheduler or planner if it

cannot be started before the latest specified time.

As can be seen in Figure 4, these architectures tend to be highly centralized, the manager
component orchestrating agent problem solving activities. As such, they rely on global,
symbolic knowledge; a characteristic that we find undesirable for robust problem solving.
There is also a significant discontinuity between the sensed environment and its

manipulated representation which tends to be symbolic.

2.2.2 Subsumption

» competence module

%
P g S
Input = » competence module S
- D L=
(perception) | | @ < :
(action)
competence module

FIGURE 5. Subsumption Architecture

25

Thesis background

In contrast with BDI architectures, subsumption architectures (as shown in Figure 5) do
not possess a symbolic representation of their environment. Also, in contrast to
deliberative architectures that rely on theorem proving and symbolic manipulation,
reactive architectures do not derive their intelligence from internally generated views of
the world but from manipulation of direct sensor input. Brooks [Brooks 91] maintains that
intelligence exists and increases only through continuing interaction of systems and is not

an innate property of individual systems (as is the case with deliberative agents).

A reactive agent need not have a complex structure to act in a complex environment.
What is needed is careful observation of the environment and recognition of simple
principles and dependencies among them. From these observations, knowledge can be
derived that allows the development of task-specific modules that continuously monitor
their environment for the occurrence of specific situations, initiating a direct reaction

when such a situation is detected. Reactive systems are, then, stimulus-response systemes.

Figure 5 shows an architecture of a subsumption-style agent. In it, sensors record
information and forward it to task-specific competence modules that react to patterns of
sensor input. Connections between competence modules either inhibit or excite the
activity of modules about or below them, ensuring that competition for permission to act is
resolved in a way that prevents unwanted cyclic or contradictory actions. The output of a

competence module is passed to an actuator which transfers the action to the environment.

Subsumption architectures are, therefore, parallel machines. Each competence module

operates concurrently; synchronization between them cannot be assumed by simple order

26

Thesis background

of execution. As such, many dependencies exist and these necessitate action coordination
through the links between competence modules. Each competence module within a
subsumption architecture is implemented using the principles of Augmented Finite State
Machines (AFSM). An AFSM initiates a response as soon as its input signal exceeds a
pre-determined threshold value. AFSMs are pure computing units, no symbolic

representations or world models are contained in them.

Synchronization of module activities is achieved through a use of inhibitor and
suppressor nodes as shown in Figure 6. A suppressor node operates on the signals received
by a module and can modify them as required. An inhibitor node can inhibit the output of

a specific signal for a certain period of time.

The Subsumption architecture has also been augmented with the so-called Behaviour
Language. In it, variables can be associated with groups of AFSMs that are active for a
period of time. Registers -- equivalent to enumerated types -- are also provided. However,
even with these state-preserving (i.e., memory) mechanisms, substantial limitations of

such layered reactive layered architectures have been shown to exist [0.V. 97a], [0.V. 97b].

Maes [Maes 89] has described a similiar architecture -- spreading activation networks --
in which action selection is modelled as an emergent property of the activation/inhibition
dynamics among these modules. Maes® spreading activation architecture has a well-
developed mathematical model that makes it appealing from an analytical point of view
and provides support for learning through dynamic modification of the “strengths”

associated with module interactions. However, as observed by Maes herself, spreading

27

Thesis background

activation networks seem highly dependent upon sensitive global control parameter

settings for successful problem solving.

Competence module 1: >
Move around

&

Suppressor

node r Competence module 0: >
Avoid contact —‘—’

Inhibitor node

FIGURE 6. Example layers in a subsumption architecture

Subsumption architectures are highly relevant to this thesis as they provide for coupled
reactive systems that react at differing levels of abstraction. The architecture described in
the next chapter depends heavily upon small, reactive agents that are coupled not in a
hard-wired way as described here but rather through a “soft” mechanism of chemical
reactions that can, if required, vary with time. The connections, as we shall see, are local

concentrations of chemicals that are sensed by individual agents.

2.2.3 Hybrid
The previous two sections have highlighted deliberative and reactive agent

architectures, these representing the architectural extremes in terms of reaction time.
Naturally, elements of these extreme architectures can be combined; two examples of

hybrid architectures are provided in the next two subsections.

28

Thesis background

2.2.3.1 Interrap

. Cooperative planning
Social Model H layer (CPL)

Local planning
Mental Model layer (LPL)

B Behavior-based
World Model , |« ‘_1 layer (BBL)
!

Sensors Commmmication| Actuators

T 13 1

FIGURE 7. Interrap Architecture

‘

The Interrap architecture [Muller 96] combines reactive and deliberative architectures in
three layers. Interrap is based upon the BDI model, but informally so. As with other BDI

models, sensor input forms the basis for agent beliefs.

The beliefs received by an Interrap agent can be grouped within three separate models
(see Figure 7). The world model contains the fundamental beliefs relating to the agent’s
environment. The mental model consists of beliefs that the agent has of itself. The social
model consists of beliefs that the agent has of other agents within a multi-agent system.
The beliefs contained within the world model are used, for the most part, in a reactive
mode. The beliefs in the mental model are used for deliberative purposes (i.e., planning of
actions related to self). The beliefs in the social model are used in order to derive actions

related to the cooperation with other agents.

The Interrap architecture uses an algorithm to derive situations from general beliefs.

29

Thesis background

Situations are a subset of beliefs representing states of concrete interest to the agent and
are used to drive the goal. Situations can be used by one or more layers depending upon
their generality. For example, a local planning situation is based upon (and can be used by)
the world and mental models whereas a cooperative situation might be used by all three

models.

The Interrap architecture shown in Figure 7 clearly shows that knowledge as well as
control is multi-layered. The control process is bottom-up; i.e., a layer receives control
over a process when this exceeds the capabilities of the layer below. The local and
cooperative layers are used when the situation exceeds the capabilities of the reactive
layer. Essentially there is a single thread of control which is passed from one layer to the

next up the hierarchy of abstraction.

Each control layer consists of two modules: the situation recognition/goal activation
module (SG) and the planning scheduling (PS) module. The SG module performs all steps
as shown in Figure 4 up to planning and scheduling with the PS module forming and
scheduling a plan to achieve the desired goal. It should be noted that the behaviour-based
layer only “sees™ the world model whereas the cooperative layer has access to the entire

knowledge base consisting of social, mental and world models.

The execution process acts in the opposite direction to the control process; i.e., it passes
from the cooperative layer through the local planning layer to the behaviour-based layer.
Only the behaviour-based layer has access to the actuators in order to effect changes in the

environment. This element of the architecture makes it significantly different from

30

Thesis background

Brooks’ subsumption architecture in which each competence module must compete with

other modules for control of actuators and sensors.

It should be noted that the interactions between the PS modules of one layer and the SG
modules of the layer above it enable interruption of the execution of a plan in progress.
This facility is essential for re-planning in a rapidly changing environment where the

behaviour-based layer tends to dominate agent actions.

2.2.3.2 TouringMachine
The TouringMachine [Ferguson 92], [Ferguson 95] architecture shown in Figure 8 also

possesses three distinct layers organized in the same way as the Interrap architecture of the
previous section. However, TouringMachines have a single control framework rather than
a hierarchical control framework and all layers compete for control of sensors and
actuators (action effectors in Figure 8). Also, the inter-layer connectivity shown in Figure
8 shows that the layers do not represent increasing levels of cognitive abstraction (as

suggested by Simon) used in the Interrap architecture.

The reactive layer of a TouringMachine agent provides it with stimulus-response type
behaviour as with the Interrap agent. Stimuli for this layer comes purely from sensors.
When a rule fires, messages are sent to the modelling and planning layers in order to
determine if further processing is required. Also, the control framework “approves” the

action associated with the rule before being sent to the agent’s effectors.

The purpose of the planning layer is to generate and execute plans. As such, its

architecture is quite similiar to that shown in Figure 4. However, in a TouringMachine,

31

Thesis background

plans are constructed hierarchically, using partial planning, with a least commitment
strategy and through access to a schema library rather likes cases in a Case-Based

Reasoning system.

The purpose of the modelling layer is to provide an agent with reflective and predictive
capabilities. The agent realizes such capabilities by constructing cognitive models of
world entities, including itself, which it uses as a platform for explaining observed
behaviours and making predications about possible future behaviours. The modelling
layer has access to a library of model templates (again case-like) and uses abductive

reasoning with conflict resolution for planning.

TouringMachines differ from Interrap agents in that no explicit modelling of cooperative

Modelling Layer (M)

Sensors Action Effectors

Planning Layer (Py

Reactive Layer (R)

Context activated Control Rules

FIGURE 8. Layer connectivity in TouringMachines

32

Thesis background

behaviour 1s present. If present at all, TouringMachines include models of self and
cooperation with other agents in the modelling layer. We believe the separation of models
of self and models of cooperation as present in Interrap represent the superior architectural

choice.

The importance of the TouringMachine architecture within this thesis is its layered
character with direct coupling of sensors to the various reasoning components; facets
exploited in the next chapter. The control framework is, unfortunately, global which
dilutes the value of the architecture in our view. Also, the claims of layering are somewhat

contrived as a result of the communication between reactive and modelling layers.

2.2.4 Mobile Agents

NC
W F - Goormumnication Fliteor
NC - Nework Conponent
MD - MbhileGxd Daxron
Y MF - Migration Fdlity
] . MM - Midike Gk Menager
kemel (Minaged Resouros) J WC - Viruad Mg Gonponent
VM - Ena Vimsd Mchine

FIGURE 9. Mobile Agent Architecture

This thesis deals with mobile agents, agents that move in a network in order to solve

problems in a network environment. Mobile agents, we believe, can be viewed in a

33

Thesis background

number of ways. We can think of mobile agents as moving the computation to the data or,
if we concentrate on the interaction of a large numbers of such agents, as an alternative
problem solving mechanism where no single agent solves the problem but the solution

emerges through the interaction of many simple agents with their environment.

Requirements for a mobile code framework address six fundamental needs: support for
legacy solutions, portability, persistent state, security (including secure code distribution
and access control lists), access to resources of visited systems and inter-mobile code
communication. Due to the fact that substantial funds and effort have been invested in

operating network management systems, support for legacy solutions is still needed.

Several elements are necessary for code mobility. We analyze them in the context of
Java technology, which provides a very convenient implementation environment for
mobile agents owing to the fact that Java virtual machines are supported on many
platforms and a rich set of standard classes have been written (e.g., to support
communications, remote method invocation, object serialization and security).
Maintaining a single program for many platforms is preferred to maintaining a number of
programs, each for a different platform. Originally, Java was designed to deliver a secure,
robust vehicle to implement applications that run on many platforms in heterogeneous

environments.

A mobile program may want to keep its persistent state during mobility. The program
may run on one host, pause for a certain period of time and continue on to another host.

The program should store its state during the pause and restore it when it continues to

34

Thesis background

execute. Java supports serialization that allows the state of classes to be stored in the file
system or sent through an output stream, so the class can be reconstructed with the same

state as before it was serialized.

A fundamental assumption is that every networked device is Java-enabled; that is, it
runs its own JVM either as a software process or as a Java chip, or has a proxy that runs a
JVM. An example of a mobile code framework architecture can be seen in Figure 9. The
most important element of that infrastructure is the mechanism for code migration. The
Mobile Code Daemon (MCD) runs as a daemon (thread) inside a JVM. The MCD listens
on well-known ports for messages that carry the compressed Java bytecodes of the
migrating software agent. The Migration Facility (MF) is the part of the MCD responsible
for actual shipment of the code. An agent's navigation model is realized through an agent’s
logic and interactions with the MCD and MF. When an agent arrives at a port, it is has to
pass security checks before it is run as a Java thread. When its objectives have been met,
the agent’s code is then migrated to another location and the local thread is terminated.
The migration is performed by the MCD under the agent’s or default control; i.e. the agent

maintains an itinerary or permits the daemon to select a migration destination for it.

Other parts of the infrastructure that do not directly support the navigation model
include the interface to host resources, communication facilitators (CF), security

facilitators (SF), event managers (EM) and a naming facility (NF).

Security has always been a major issue in distributed computing and especially so in

mobile agents [Mole]. Downloading and executing an untrusted, unsecured program at an

35

Thesis background

end user’s computer may expose private resources to malicious attacks. Taking into
account the global nature of networks such as the Internet, security should be of serious
concern on every connected computer. Untrusted programs should be authenticated and
validated before they are allowed to execute. There are four major security services
[Sander 97]: authentication, authorization, data integrity and data privacy. Java provides
not only portability but also security features in its Virtual Machine (class loader and
bytecode verifier) and an Application Program Interface (API) that facilitates the

development of secure mobile agent implementations.

The ability of a mobile agent to access managed resources of visited systems is clearly
necessary for a network management. Accessing data on a heterogeneous system may be
complex due to non-standard naming and procedures to manage them. Therefore, there
must be a standard way that is understandable to the mobile code in performing its tasks
without prior knowledge of the underlying system. The framework provides a template
that we call a Virtual Managed Component (VMC). The mobile agent accesses managed
resources indirectly through the VMC. Together with the security facilitator, it constitutes
the security model of our agents. The VMC implements access control to the resources of
the network component in order to guard sensitive data. A mobile agent is not allowed to
access the local file system, launch programs, call system level services of the visited
network component, or invoke SecurityManager or ClassLoader classes. With these
restrictions, the network component is reasonably safe from attacks of any malicious
mobile code; i.e., a piglet. However, research on security in mobile agents is a fertile area

of current research.

36

Thesis background

The fundamental function of the VMC is to interface to the managed resources of a
network element, so a mobile agent can get or set their attributes. The interface to the
managed resource facility of the VMC controls the access to the attributes of the managed
resources. Due to the complexity and heterogeneous nature of network components, there
is no standard way in which vendors implement the interface to the devices. The naming
schema varies as well. Therefore, there must be a uniform language to allow a universal
way of accessing the managed resources. The format of the MIB (Managed Information
Base; e.g., the SNMP MIB) may be considered for this uniformity and standardization. If
a vendor has implemented its own naming schema, it should provide a translator or
interpreter that maps the vendor specific names to ones that are understood by agents.
Another facility, which is a part of the VMG, is access control (i.e., authorization) to the
managed resources, as well as the rights to extend the VMC. The VMC may also provide
a management applet that can be downloaded to the manager and shown on the web
browser in a vendor-specific way. Since a network component may have limited storage
resources, the VMC may contain a redirection to the location of the applet in a designated
remote repository. The vendor may also include recovery procedures in the VMC that may
be accessible to other applications. The recovery procedures are used for diagnosis and
recovery and can be controlled by a visiting agent or a management applet of the network
component. Another facility provided is provisioning procedures. These procedures may
be used for a plug-and-play capability of the network component, described in a later
section. For instance, the network component may adapt itself to its network environment

by automatically installing and configuring its driver that is downloaded from the vendor’s

37

Thesis background

repository. The Jini framework [Jini] provides exactly this type of facility.

The infrastructure implements a security schema that is sufficient for most network
management applications. The use of Java is convenient because it has provides a security
package that is sufficient to implement four security facilities: authentication, data
integrity, data privacy and authorization. The security facilitator makes extensive use of
Java security facilities. The JDK 1.1 also comes standard with a default provider, named
“SUN?”. The “SUN” provider package includes an implementation of the Digital Signature
Algorithm, and an implementation of the MDS5 [RFC 1321] and SHA-1 [NIST FIPS 180-
1] message digest algorithm. The authentication uses DSA, which provides a pair of keys,
a public key and a private key. The data integrity use of MD5 and SHA-1 ensures the

integrity of mobile agent during its transmission.

The communication facilitator and the naming facility implement the communication
model. To perform its task, a mobile agent may need to collaborate with other agents.
Because of agent mobility, the main problem of the inter-agent communication is locating
the recipient agent. To resolve this issue, a Naming Facility is provided. The server
represents a secretary that always gets a report about the current location of active mobile
agents from visited MCDs. Notification of events concerning phases of the lifecycle of an
agent are forwarded to the Naming Facility in order that it can track the location of the
agent. The NF also provides a mailbox for an agent that is not currently present for a
number of reasons, such as the agent is in the process of migrating, the agent has left the

network, or the agent has not been created yet. As soon as the recipient agent has migrated

38

Thesis background

or (re)appeared in the network, the message will be delivered to it.

There are two general mechanisms for inter-agent communication that have been
implemented: a blackboard architecture and direct agent to agent communication. The
blackboard is a placeholder where agents can post messages and other agents register for
notifications of messages of particular types and content. The blackboard (see section
2.2.5.4) can also be a mobile agent in order that it can migrate to make best use of network
computing and bandwidth resources. Direct agent to agent communication uses the CF
which, in turn, uses the NF in order to locate an agent before delivering the message to the

mailbox set up for the recipient agent on a particular network element.

2.2.5 Multi Agent System Coordination, Communication and Control

MLiti-agent systerms
I l I
Independent Cooperative

I — I I I
Discrete Emergent Communicative Non-comrunicative
Coaperation
[I
I l [I

Sigrergc Smilarity | | Deliberative | | Negotiating
Sptial Termpora

FIGURE 10. Multi Agent System cooperation and Control Taxonomy

A taxonomy of cooperation models for multi agent systems is shown Figure 10. This
taxonomy is due to Doran [Doran 97]. Our interest in this taxonomy is in two subtrees:
Communicative and Emergent Computation. In the sections that follow, examples of ideas

39

Thesis background

and technologies are briefly described.

2.2.5.1 Market-based control
An abstract definition of a market is a system with locally interacting components

(agents) that achieve a measure of coherence when overall, or global, behaviour is
considered. In some sense, behaviour is emergent and “problem solving” is decentralized
but in reality the market-based mechanism relies of the principle of price stability in the
economy. It is through the simple interactions of buying and selling, i.e., trading, that
desirable global effects can be achieved. Examples of desirable interactions are stable
prices or fair allocation of resources. It should be stressed that market-based systems do
not guarantee optimality but are able to facilitate resource allocation with very little
information, i.e., price. This makes them attractive candidates for use in complex domains

where multi-agent systems are being considered [Clearwater 96].

A market based system of agents generally contains rational agents, this comment being
based upon a review of [Clearwater 96] where prototypical applications in the areas of
resource allocation in networks, operating systems, factory scheduling and building
control are documented. The need for rationality is (in part) due to the limited information
that is communicated between agents. Interestingly, it has been noted in [Steiglitz 96] and
[Kephart 98] that purely rational agents acting in a market based system can cause wild
fluctuations in price and that the addition of speculator (or noisy) agents [Steiglitz 96] can

reduce amplitude fluctuations.

Wellman [Wellman 96] has introduced the methodology of market-oriented

40

Thesis background

programming (analogous to agent oriented programming) and implemented it in the
WALRAS platform. Market-oriented programming is based upon the principles of the
theory of general economic equilibrium. In market oriented programming, the metaphor
of an economy directly computing the behavior of an agent in a multi-agent system is used
literally; the distributed computation being implemented as a market price system. Stated
another way, agents interact by offering to buy or sell commodities at fixed unit prices.
When the system reaches equilibrium, the computational market had computed the
allocation of resources throughout the system and dictates the activities and consumptions
of the various agents. Herein lies the single biggest weakness of the approach, the
implication that equilibrium is even possible. It is understandable that this assumption is
made given that economics uses the concept of a general equilibrium. However, in reality,

economic systems rarely achieve equilibrium and are always in a transient state.

While theoretical results (including convergence properties) are limited for systems
implemented using market-oriented programming, the following qualitative observations

have been made:

e The equilibration process scales well with the number of agents. Convergence rate not
exponential with number of agents.

e The equilibration process scales non catastrophically with the number of goods. Sub-
exponential convergence rate with increasing number of goods.

e Asynchrony reduces oscillation. Noise is good.

e Incremental bidding can simplify agent behaviour. Agents only have price-quantity
knowledge, not point-price as would be expected in a real system.

e Non-convexities can be fatal, and often are. Non-linearity causes severe convergence
problems.

The last point is the most damming of all. Market-oriented programming often fails

41

Thesis background

when non-linear relationships exist in the poin#-price curves. Non-linearity is the norm in
most control or design problem scenarios and so this represents a real problem. However,
the concepts of information ecologies and attractive properties from the computational
point of view, make market-oriented programmming an appealing architecture for control
problems. It is this observation which makes market-oriented programming relevant to

this thesis.

2.2.5.2 Contract Net Protocol

Contract net systems represent a concept that can be used to establish efficient
coordination mechanisms between agents integrated in a multi-agent system. A contract
net consists of a number of nodes that are foramed by the individual agents in the multi-
agent system along with a manager which has the responsibility for coordinating activity.
As in a market place, a manager asks for bids on a set of pending subtasks and nodes
respond to requests that interest them; i.e., tasks that they can perform with the constraints
as specified. Task assignment is interactive; all nodes are involved. The goal is to use
computational resources (i.e., the knowledge and reasoning capabilities of individual

agents) in the most efficient way possible.

The Contract Net Protocol, shown in Figure 11, demonstrates the four phases of the
protocol. A bid is first solicited from interested nodes. Each node deliberates on whether it
can meet the requirements of the subtask and responds to the manager. Upon receipt of a
number of bids, the manager awards a contract to one of the nodes. It may be the case that

no bids are received in which case the contract is reformulated (relaxing conditions) and

42

Thesis background

Manager . on for bids

Nodes

A\ 4

Subproblem

Evaluation

Evaluation application

contract

Contract completion

Subsolution

Idle) confirmation | Sybproblem solution

result

Subsolution

FiIGURE 11. The Contract Net Protocol

re-broadcast. Upon receipt of a contract, an agent begins processing of the subtask. When
complete, the manager is provided with the solution. The manager remains idle during
subtask solution. When all subtasks have been solved, the manager assembles the

subsolutions into an overall solution to the problem. An example of an initial bid, the bid

response and the subsequent awarding of the contract are shown in Figure 12 below.

TO: all nodes ‘
FROM: manager
TYPE: task bid announcement
ContractID: xx-yy-zz
Task Abstraction:

<subproblem description>
Eligability Specification:
<list of minimum requirements>

Bid specification: <description of
required application
information>

Expiration time: <latest possible
application time>

TO: manager G
FROM: node X

TYPE: application
ContractID: xx-yy-zz

Node Abstraction: <description
of the node’s capabilities>

TO: node X ‘
FROM: manager

TYPE: contract

ContractID: xx-yy-zz

Task Specification: <description
of the subproblem>

FiGURE 12. Example Contract Net Protocol Interaction

43

Thesis background

2.2.5.3 Knowledge Query and Manipulation Language
While blackboards and reactive tuple spaces provide a shared space for communication,

they do not describe the syntax of the information stored there. In order to be useful, a
common format needs to be adopted in order that all agents may understand it. This is the
purpose of the Knowledge Query and Manipulation Language (KQML) [Labrou 97].
KQML is an example of an Agent Communication Language (ACL). KQML is based
upon speech act theory and was the outgrowth of the ARPA Knowledge Sharing Effort. A
KQML example is shown in Figure 13. Given the acceptance of the Federation for
Industrial Physical Agents OS (FIPA-OS), Extensible Markup Language (XML) and Java

code mobility, it has, at best, an uncertain future.

The syntax of KQML is not important from the perspective of this thesis. It is, however,
included in order to demonstrate the importance of having a single representation for
communication between agents. This will be the subject of further comment in the section
on Autopoiesis and in the next chapter where the agent architecture proposed in this thesis

is discussed.

(<Performative>
:content <statement/speechact>
:sender <name>
:receive <name>
:language <text>
tontology <text>

)

Performative corresponds to speech act types.

FIGURE 13. Example KQML

44

Thesis background

Agent

Control
lackboar

Domain
Blackboard

Control
KSAR

Domain
KSAR

Enumerate Choose Execute
> KSAR KSAR KSAR

Management module

FicURE 14. The BB1 Blackboard Architecture

2.2.5.4 Blackboard Systems
A blackboard system is used to support distributed problem solving by providing all

agents within an agent system with a shared work area where they can exchange
information, knowledge and data. Communication is not agent to agent but indirect via the
blackboard (which may be thought of as shared memory). An advanced blackboard

architecture is shown in Figure 14.

Inter-agent communication is achieved by writing something to the blackboard which is
then available to other agents in the system. Agents register with the blackboard in order
to receive notifications of messages of interest. Typically, blackboard systems contain
regions, and an agent registers its interests with one or more of them. Agents may also poll
the blackboard looking for items of interest. Naturally, all agents have to understand the

same language when using this type of communication vehicle and KQML is often used in

45

Thesis background

conjunction with the Contract Net Protocol in the efficient implementation of a blackboard

system.

The advanced blackboard architecture shown above includes a management component
that deals with issues such as which agent should be chosen for solving a subtask and
posting of subproblems on the blackboard. Agents report interests in specific subproblems

in a Knowledge Source Activation Record (KSAR).

The BB1! architecture shown above provides for a dual blackboard architecture. BB1 is
a software system, originally invented by Barbara Hayes-Roth in 1983, that embodies the
"blackboard control architecture” for blackboard systems. In addition to the traditional
properties of blackboard systems, BB1 enables an application to use a uniform reasoning
method (event-based triggering and opportunistic contro! of reasoning operations) to build
and modify explicit plans for its own behavior at run time. The domain blackboard deals
with the solution of actual problems. Control information is stored in the control
blackboard. The structure of the control blackboard does not depend upon the domain
blackboard but is determined by system selection of the coordination and control strategy.
Separate KSAR databases are maintained for domain and control blackboards. The
management module for the BBI architecture performs the functions of: enumeration of

all KSARs, KSAR selection, followed by KSAR execution.

While appealing, providing flexible cooperation and communication mechanisms,

blackboards nevertheless have drawbacks. The centralized nature of the architecture imply

1. BBI stands for “Black Board 1™ as far as we can ascertain.

46

Thesis background

that registered agents have to place their information on the blackboard directly regardless
of their network location. This can lead to excessive network load. As such, scalability is a

real issue.

The importance of the blackboard concept to this thesis is that it provides for a shared
communication medium, something required in SynthECA. Also, the blackboard is
partitioned, allowing agents to receive only messages of interest to them. This
characteristic is also important within the SynthECA architecture introduced in the next

chapter.

2.2.5.5 Reactive Tuple Spaces

Related to the previous section, reactive tuple spaces are based upon ideas from Linda
[Gelernter 86]. Linda is a parallel processing paradigm based on the concept of
“generative communication”, which unifies the concepts of process creation and
communication. Linda is a coordination language which utilizes a concept known as ruple
space. A tuple space can be thought as a kind of global associative memory. A tuple space
stores objects called ruples. A tuple consists of a sequence of typed fields, for example:

("foo", bar, 6, 23.5). Linda provides four basic primitives:

e out(t): placing the tuple t in the space;

e in(t): to remove the tuple t from the tuple space;

e read(t): to access the tuple t in the tuple space non-destructively;
e ecval(t): to evaluate the tuple t in the tuple space.

Tuples are associative; i.e., pattern matching occurs for tuples. Full unification may be

supported, for example. Further primitives such as register(t) and deregister(t) have been

47

Thesis background

added to Linda-like tuple spaces in order to support an event notificaticn mechanism.

A reactive tuple space extends the Linda concept by providing a meta tuple space. When
a primitive operation occurs on a tuple within the domain space, the meta space is queried
using the read primitive for a tuple of the form (ReactObj, Tuple, OpType, AgentID).
Typically, the Tuple, OpType and AgentID will be fully qualified, the ReactObj is the
reaction object which is associated with the tuple in the meta space. The associated

ReactObj is returned to the agent that invokes the reactive tuple space primitive action.

The reactive tuple space mechanism allows tuples to be programmed as the reaction
object returned has a standard interface that can be invoked by any agent communicating
with the space. Interestingly, a number of tuple space implementations have appeared for
mobile or multi-agent systems [Cabri 00], [Cabri 99], [Micmac] supporting the view that

it provides an important communication mechanism for such agent systems.

Reactive tuple spaces are important to this thesis as the chemical formulation for
communication used in SynthECA is implemented uses a tuple space model. Sensors and

effectors, as we shall see in the next chapter, perform the functions of out(t) and read(t).

2.3 Swarm Intelligence

The notion of complex collective behavior emerging from the behavior of many simple
agents and their interactions is central to the ideas of Artificial Life [Langton 87]. There
are many examples in Nature of social systems where individuals possess simple
capabilities which, when compared to their collective behaviors, are much more complex.

Such systems span many levels of evolutionary complexity, from simple bacteria [Shapiro

48

Thesis background

88], to ants [Goss 90], [Franks 89], caterpillars [Fitzgerald 88] and beyond.

The principle of Swarm Intelligence is one that drives many of the contributions and

ideas in this thesis. What is it and why is it important to this thesis?
Swarm Intelligence, according to Beni [Beni 89] can be defined as:

“Swarm Intelligence is a property of systems of non-intelligent robots that exhibit

collectively intelligent behaviour.”

Swarm Intelligence is important in a study of multi-agent systems as agent architectures
have to organize themselves and adapt dynamically to changing circumstances. They must
do this without an overseer; i.e., top down control from an administrator. It is possible to
achieve self organization with rational agents (for example, BDI agents) that attempt to
emulate human reasoning by maintaining models of self and by modelling the society of

rational agents with which they negotiate. The Interrap architecture described in Section

2.2.3.1 is such an attempt at self organization without a central control element!. Rational
agents, and rational multi-agent systems still suffer from the limitations of being brittle
with respect to agent or message delivery failure; swarm agents are more appealing in this
regard.

The characteristics of a swarm are that there is no central controller or data source and

that global state is not maintained. There is no explicit model of the environment.

Perception is local only and swarm agents (robots in the above definition) are reactive,

1. Nevertheless, a blackboard is often used for inter agent communication which creates a centralized architecture.

49

Thesis background

belonging to the class of agents favoured by Brooks. Swarm agents are situated; i.e., they
sense their environment directly and do not manipulate symbolic representations of the
environment. Again, in this regard, they are similiar to competence modules seen in a
Brooks subsumption-style robot. Swarm agents do not possess high level goals, generally
no single agent within the swarm knows what problem is to be solved. Instead, each agent
follows a sequence of simple actions determined by locally sensed input and it is the
actions of many such agents that cause problems to be solved. Problem solving is

emergent or, stated another way, swarms self organize.

The properties of a swarm system are such that they are generally robust to the failure of
individual agents; i.e., it does not matter that any one agent may not complete its task. In
fact, a “poorly-performing” agent will often “die” rather than contribute to the overall
problem solving process which further improves the performance of the swarm system.
Swarm systems also tend to react well to changing environments, environments that may
even cause the extinction of large numbers of agents when dramatic or extreme changes

occur. This observation will be revisited when we discuss agent management in chapter 6.

Swarm systems tend to rely on agent to agent interactions through the environment and
not direct agent to agent communication as in many symbolic cooperative agent systems.
Such systems are necessarily situated, as an agent, to determine its next state, bases its
decision upon flows it senses from the environment and these flows depend upon the
actions of other agents. No single agent can predict the effect of its actions on the

environment because these will depend on the actions of other agents as well. Swarm

50

Thesis background

agents are not generally reliant upon the actions of any single agent to solve a particular
problem. Rather, it is the reinforcement of the actions of one agent by another that
naturally causes a solution to emerge. Another important observation about swarm agents
is that they move through the environment, their migration guided by gradients of flows
within that environment. This coupling with the environment makes swarm systems a
natural candidate as a model for autonomous mobile agents. Intelligent behavior
frequently arises through indirect, environment mediated communication between the

agents, this being the principle of stigmergy [Grassé€ 59].

Crucial, then, to the development of a useful pragmatic theory of swarm systems is the
observation that the swarm cannot be considered independently of the environment,
modelling of the environment must be included if a swarm is to be correctly engineered.
Our view, and one that forms the basis of the architecture described in the next chapter, is
that the coupling of agent and environment through time-based dynamical processes such
as diffusion and chemical activity allow intelligence to arise in swarm systems. This view
is not unique. Recently, Port and vanGelder [van Gelder 95] have articulated the idea that
cognition is a time-based dynamical system. In fact, Port and vanGelder propose an
alternative to the Physical Symbol Hypothesis [Newell 80] which they call the Dynamical

System Hypothesis, the spirit of which runs through all chapters of this thesis.

In order to understand swarm systems, three things need to be analyzed: the agent, the
environment and the coupling between the two. We will do this with a series of examples

drawn from the world of insect and animal behaviours. The importance of these examples

51

Thesis background

within the context of this thesis is that they clearly demonstrate that simple agents
interacting locally through the environment can generate complex, emergent problem

solving behaviour.

2.3.1 Ant Behaviors
Individual ants are behaviorally simple insects with limited memory and exhibiting

activity that has a stochastic component. However, collectively ants manage to perform
several complicated tasks with a high degree of consistency. Examples of sophisticated,
collective problem solving behavior have been documented [Franks 89], [Holldobler 94]
including:

e Forming bridges

e Nest building and maintenance

e Cooperating in carrying large items

e Finding the shortest routes from the nest to a food source

e Regulating nest temperature within a one degree Celsius range
o Preferentially exploiting the richest source of food available.

In the examples listed above, two forms of stigmergy have been observed. Sematectonic
stigmergy involves a change in the physical characteristics of the environment. Ant nest
building is an example of this form of communication in that an ant observes a structure
developing and adds its ball of mud to the top of it. The second form of stigmergy is sign-
based. Here something is deposited in the environment that makes no direct contribution
to the task being undertaken but is used to influence the subsequent behavior that is task

related.

Sign-based stigmergy is highly developed in ants. Ants use highly volatile chemicals

52

Thesis background

called pheromones (a hormone) to provide a sophisticated signaling system. Ants foraging
for food lay down quantities of pheromone marking the path that it follows with a trail of
the substance. An isolated ant moves essentially at random but an ant encountering a
previously laid trail will detect it and decide to follow it with a high probability and
thereby reinforce it with a further quantity of pheromone. The collective behavior which
emerges is a form of autocatalytic behavior where the more the ants follow the trail the
more likely they are to do so. The process is characterized by a positive feedback loop,
where the probability that an ant chooses any given path increases with the number of ants

choosing the path at previous times.

Essentially, then, ants following simple (simulated) rules explains the emergence of

complex problem solving behaviour.

2.3.2 Ant foraging
Ants are highly successful foraging insects. Societies of ants construct networks of paths

that connect their nests with sources of food available within their local environment.
When described in terms of a data structure, these networks form minimum spanning trees
[Goss 90] and by traversing these paths ants minimize the energy required to bring the
food back to the nest. While graph theory has a number of defined algorithms for the
construction of minimum spanning trees, they are certainly not used by ants! Rather, this
globally optimal data structure arises, or emerges, as a consequence of the simple actions

of the individual ants.

The ants’ actions are straightforward and consist of five rules [Steels 95]. These are:

53

Thesis background

1. Avoid obstacles. Ants move around obstacles rather than crash into them.

2. Wander randomly preferring to move in the direction of increasing pheromone density.
Sensing pheromones causes an ant to choose the direction of its next step from a
distribution which is weighted in favour of the direction of the scent. If no pheromones
are detected, execute Brownian motion, choosing each step from a uniform distribution

over all possible directions.
3. If the ant finds itself at a food source and is not currently holding any, pick up the food.
4. If the ant finds itself at the nest and is carrying food, drop the food.

5. While holding food, an ant drops pheromone at a constant rate as it walks. The
movement strategy continues in rule 2, or movement can be random. Both strategies
cause the same emergent behaviour but using the existing pheromone trails works more

quickly.

The emergent behaviour -- that of path planning - arises as a consequence of the
Brownian motion of the ants which guarantees that ants can visit all points in a given
region. Assuming that the separation of nest and food source are small relative to the range
of the ant, ants will find the food and, importantly, the nest. Ants that wander a long
distance from the nest and find no food will typically die or, at the very least, never reach
the nest again. As such, they contribute nothing to the path planning activity. As food
carrying ants are the only ants which drop pheromone, and only when carrying food, all
pheromone trails lead to a source of food. Paths to depleted food sources will disappear

because pheromones evaporate and diffuse within the environment. Similarly, food

54

Thesis background

carrying ants that do not return to the nest will never complete a trail. Finally, paths back
to the nest will easily be detected by outgoing ants and as these inevitably lead to food,

they will be reinforced by those ants once they have picked up food.

While the initial path will not be straight, ants still exhibit a random element in their
movement and this wandering will generate short cuts across the initial random walk.
Diffusion of the pheromone in the environment causes merging of these short cuts into a
straighter path the more it is used. Over time, and the actions of many ants, a minimum

spanning tree emerges.

It is evident from the five rules shown above that the ant neither has the goal of
computing the shortest path to any individual food source nor does it intend to merge these
paths to various food sources in order to form a minimum spanning tree. The behaviour is

clearly emergent.

2.3.3 Ant Brood Sorting
Sorting algorithms have been investigated by computer scientists for many years and the

induction of programs to perform sorting tasks is still considered a hard problem by the
Machine Learning community. How then can an ant colony sort the many items such as

eggs, food and larvae without such sophisticated machinery?

Individual ants act according to four very simple rules in order to solve the sorting task
[Deneubourg 90]. These are:
1. Wander randomly around the nest (as for rule 1 in the foraging example).

2. Each ant has a small memory of the last several steps. An ant senses nearby objects.
55

Thesis background

3. When an object is encountered, a decision is made whether to pick up the object based
upon whether the ant has seen similiar objects recently (i.e., currently in memory). The

probability with which an ant decides to pick up an object is:

k . 2
pickup)

Ppickup = (
P P kpickup +f
where fis the fraction of memory that is occupied by objects of the same type as the

sensed object and kg, is a constant. As can be seen, the smaller the value of f, the
more likely the ant is to pick up the object.

4. If an ant is carrying something, it decides stochastically whether to drop it or not on
each time step. The probability of dropping the carried object increases as the ant
ceases to sense objects of that type in the local environment. The probability with
which an ant decides to drop an object is given by:

k 2
_ | _—drop
Pdrop (kdrop + f)

where ky,, is a constant.

Sorting emerges in this system as a result of the following. As in path planning,
Brownian motion allows an ant swarm to explore all regions of the nest. While objects
may be distributed randomly initially, the resulting arrangement of objects will not be
uniform. These density fluctuations stimulate ants to drop other similiar items.

Consequently, the fluctuations in density amplify and new objects are attracted by the

56

Thesis background

existence of a high concentration of like objects. The stochastic nature of the pick up and
drop behaviors facilitates the merging of multiple concentrations as, periodically, ants pick

up an object from one high concentration and move it to another region.

Again it is evident from the four rules shown above that an ant does not have sorting as a

rational goal. The behaviour is clearly emergent.

2.3.4 Wolves surrounding prey
Wolves, it is known, are capable of preying upon much larger animals by hunting in a

pack and surrounding their prey. The so-called predator-prey problem has been well-
studied in the field of Distributed Artificial Intelligence (DAI) [Korf 90]. Frequently, the
solutions proposed assume reasoning and negotiation (communication) capabilities in the
predator that are unproven and even implausible. Wolves, for example, do not have long

range communication capabilities.

However, simpler solutions involving swarm-like behaviour are possible. Again, a small

number of rules govern the behaviour. These are:

1. For the prey, move to the point that is farthest way from the nearest wolf. As long as its

rate of movement is faster than that of a wolf, escape is possible.

2. For wolves, move to the point in the region with the highest score given by:

S = d(prey) — k*d(wolf)

where k£ is a constant representing a repulsive force between wolves, d(prey) is the

57

Thesis background

distance to the prey and d(wolf) is the distance to the nearest other wolf.

Each individual in this system influences and is influenced by the entire system. The
global behaviour of the system depends crucially on the relative speeds of wolves and
prey and the value of the repulsive constant, k. When balanced, the wolves will, without
fail, surround their prey without recourse to sophisticated communication or negotiation
strategies. Here, it can be argued, the wolves have the goal of capturing their prey but they
certainly do not have the ability to coordinate a sophisticated pack-wide strategy

necessitating global communication.

2.3.5 Flocking behaviour
Schools of fish display remarkably coordinated behaviour as do flocks of birds. Large

numbers of them stay together, apparently operating as a single entity. Both fish and birds
coordinate turns, avoiding collisions with each other and obstacles in their path.
Interestingly, no central controller is involved which contrasts strongly with the type of

control mechanism employed for similiar many body problems such as are found in air

traffic control systemsl. The key difference, as with the previous three examples, is

distribution of activity and the reinforcement of one agents actions on another.
Birds or fish follow three simple rules [Reynolds 87]. These are:

1. Maintain a minimum separation from the nearest object (bird or obstacle).

2. Match velocity to nearby birds.

1. Fish schools may contain thousands of individuals. Air traffic control systems certainly do not seem to scale to such
a size.

58

Thesis background

3. Stay close to the centre of the flock.

The flock, then, is a self sustaining structure. It maintains itself purely through local
sensory input and activity. Each entity’s actions simultaneously respond to and change the
overall structure of the flock while no individual has the goal of flock maintenance. Again,

the effects of local action propagate throughout the system causing global coordination.

2.3.6 The Wave
A recent phenomenon at sporting events, the wave represents a remarkable example of

global coordination through local interaction in the area of human social behaviour.
During the wave phenomenon, one person raises his or her arms and, within seconds, the
whole stadium responds in a wave that travels rhythmically around the stands. The wave
appears orchestrated but this is in fact not so. The rules governing the behaviour are

simple, and rely on limited communication. They are:

1. If the individual to your left has his or her arms raised, raise yours.
2. If the individual k positions to your right has his or her arms raised, lower your arms, if
raised.

These two rules are sufficient to maintain a wave of width k indefinitely in a circular
structure such as a stadium. Only one individual need raise his or her arms for the wave to
be started. The reader might argue that some global communication has occurred in that
we all understand the “arms up” cue. However, imagine adding an alien to the crowd who

is given only the above rules to guide his or her actions, the wave would still emerge.

59

Thesis background

2.3.7 Simulation of Swarms: StarLogo
StarLogo is an evolution of the Logo language. Logo was designed as a programming

language for children, allowing themn to create simple graphics on a computer screen.
StarLogo [Resnick 94] can be thought of as a simulation environment designed to
stimulate understanding about decentralized systems. StarLogo draws for its inspiration
on Cellular Automata. StarLogo is relevant to this thesis in that it represents an
environment in which massively paralllel computation can be performed for the purpose of

exploring self organizing phenomena.

In StarLogo, the intended focus of the system is the investigation of how colony-level
behaviours can arise from interactions between individual creatures and their
environment. There are two types of esntity in the Starl.ogo world: creatures (turtles) and
patches. Associated with the creatures that inhabit the world are behaviours that are
encapsulated inside of individual threads of control called daemons. Behaviours belong to

the environment and not, as is the case in object oriented systems, to the class of the object

or derived from another instance!. Patches are discrete regions of the environment with
their own state information; e.g., colour, concentration of a scent and the creatures
currently located there. Patches may have behaviour, and in this regard are similiar to
creatures. The behaviour of a patch can be thought of as the physics of the patch and, as all
patches share the same behaviour, as the physics of the universe. While the word scent is

used by Resnick — a word that naturally evokes an image of a chemical being modelled

within the system -- the chemical analogy is limited in that creatures do not participate in

1. As in the Self language. for example.

60

Thesis background

chemical reactions; they merely sense chemicals. This limitation, and the value of a
chemical abstraction in computing generally, provides partial motivation for the

architecture presented in the next chapter.

Creatures are endowed with sensory apparatus and can sense each other and the contents
of a patch. Using sensory input they can orient themselves in the direction of the highest
concentration of a given scent thereby moving along a gfadient of chemical activity.
Arguably, these characteristics are the most important creature capabilities and enable self
organization within the StarLogo simulation system. While breeds of creature are
supported, creatures generally are limited in that they have no memory and behavior of all
breeds is defined within the environment and not associated with the individual breed or
“class”. This latter characteristic of the system makes it completely unsuitable for

implementation in a real network, for example.

2.4 Engineering Swarm Intelligence

This section brings together information regarding the main sources of research in
Swarm Intelligence. The most complete set of work has been done by Marco Dorigo, and

this has influenced our work considerably.

Swarm intelligence research originates from the work on the emergence of collective
behaviours of real ants. Ants have a small amount of cognitive capability, limited
individual capabilities, and react instinctively in a probabilistic way to their perception of
their immediate environment. They can, for example, find the shortest path between the

nest and a food source by laying down on their way back from the food source a trail of an

61

Thesis background

attracting substance, called pheromone. Ants wandering randomly around the nest can
then be attracted by this trail and this will rapidly lead them to the food source. By laying
down a pheromone trail of different density depending on the quality of the food source
the have found, the colony becomes able to discriminate between food sources of different

kinds and qualities.

2.4.1 The Ant System
The Ant System (AS) is a general-purpose heuristic algorithm, which can be used to

solve diverse combinatorial optimization problems. This work has been lead by Marco
Dorigo, now at the University of Free Brussels, Belgium. For an in-depth technical
description of the algorithm, the reader is referred to [Dorigo 91] and, more recently,

[Dorigo 96].

The idea of using swarm intelligence as a new computational paradigm for solving
engineering problems is quite recent. Marco Dorigo and colleagues were the first ones to
propose adapting these ideas to the Travelling Salesman Problem [Dorigo 91]. Many other
applications since then have been proposed: graph partitioning [Kunz 94], data clustering
[Faieta 94], job shop scheduling [Color 94], robotics [Beni 90], vehicle routing
[Bullnheimer 97], graph colouring [Costa 97], the quadratic assignment problem
[Maniezzo 94], [Taillard 97]. See [Bonabeau 94] for an overview. Variations on the basic
AS have also been proposed. Local search operations have been proposed [Stiitzle 97], as

has the integration of reinforcement learning [Leer 95], or Q-learning [Gambardella 95].

The advantages of swarm intelligence are twofold. Firstly, it offers intrinsically

62

Thesis background

distributed algorithms that can use parallel computation quite easily. Secondly, these
algorithms show a high level of robustness to change by allowing the solution to
dynamically adapt itself to global changes by letting the agents (the ants) self-adapt to the

associated local changes.

2.4.1.1 Motivations for the Ant System
The Ant System (AS) has several desirable characteristics. It is versatile, in that it can be

applied to similar versions of the same problem. For example, there is a straightforward
extension from the travelling salesman problem (TSP) to the asymmetric travelling
salesman problem (ATSP). It is robust and general purpose. It is a population-based
heuristic. As such, it allows the exploitation of positive feedback as a search mechanism,
as described in a later section. Consequently, it makes the system amenable to parallel

implementations.

These desirable properties are mitigated by the fact that, for some applications, the Ant
System can be outperformed by more specialized, domain specific algorithms providing
empirical support for the No Free Lunch theorem [Wolpert 99]. Many heuristics share this
problem, examples being the much-researched problem solving techniques of simulated
annealing (SA), and tabu search (TS). Nevertheless, as is the case with SA and TS, the AS
represents a heuristic that can be applied to problems which are similar to a classical
problem, such as TSP, but are sufficiently different as to make the application of a domain

specific algorithm impossible. The ATSP is an example of such a problem.

The AS is an example of a distributed search technique. Search activities are distributed

63

Thesis background

over ant-like agents, i.e., entities with very simple basic capabilities. These agents, in a
metaphorical and highly stylized way, mimic the behaviour of real ants. In fact, research
on the behaviour of real ants has greatly inspired the AS. The research inspiration for the
AS arises from the work of ethologists, who attempted to understand how almost blind
animals like ants could manage to establish shortest route paths from their colony to

feeding sources and back.

The following paragraphs are a modified explanation of path-emergence as provided in

[Dorigo 96].

"Counsider, for example, the scenario shown in Figure 15. Ants are walking
along a path, for example from food source A to the nest E, and vice versa,
see Figure 15a. Suddenly an obstacle appears and the path is cut off.
Therefore, at position B the ants walking from A to E (or at position D
those walking in the opposite direction) have to decide whether to turn
right or left (Figure 15b). The choice is influenced by the intensity of the
pheromone trails left by preceding ants. A higher level of pheromone on
the right path gives an ant a stronger stimulus and thus a higher probability
to turn right. The first ant that reaches point B (or D) has no preference for
left or right branches of the path because there is no pheromone on either

path. Because path BCD is shorter than BHD, the first ant following it will

64

Thesis background

reach D before the first ant following path BHD (Figure 15c¢).

The result is that an ant returning from E to D will find a stronger trail on
path DCB, caused by the half of all the ants, by chance, deciding to
approach the obstacle via DCBA and by the already arrived ones coming
via BCD. Therefore, they will prefer path DCB to path DHB.
Consequently, the number of ants following path BCD per unit of time will
be greater than the number of ants following BHD. Hence, the quantity of

pheromone on the shorter path will grow more quickly than on the longer

o$3 iz L ta
ek C:h:—’ﬁ
o ta

oy

= o b ﬂiqrpg
Caopy S o
=]
=2
o)

8] b) J

How ants find shortest paths

a) Ants follow a path between points A and E.

b) An obstacle is interposed; ants can choose to go around it following one
of the two different paths with equal probability.

¢) On the shorter path more pheromone is laid down.

FIGURE 15. Shortest Path Emergence

65

Thesis background

one. Therefore, the probability with which any single ant chooses a
particular path is quickly biased towards the shorter one. The result is that,

very quickly, all ants will choose the shorter path.

The algorithms that we are going to define in the following sections are
models derived from the study of artificial ant colonies. Therefore, we call
the system the Ant System (AS) and the algorithms we introduce, ant
algorithms. As we are not interested in simulation of ant colonies, but in
the use of artificial ant colonies as an optimization tool, our system will

have some major differences with a real (natural) one:

1. Artificial ants have some memory.
2. They are not completely blind.

3. They live in an environment where time is discrete.

Nevertheless, we believe that the ant colony metaphor can be useful to
explain our model. Consider the graph of Figure 16a, which is a possible
AS interpretation of the situation of Figure 1b. In order to fix the AS ideas
more concrete, suppose that the distances between D and H, between B and
H, and between B and D—via C—are equal to unity. Let C be positioned
half the way between D and B (see Figure 16a). Now let us consider what
happens at regular discrete points in time: t=0, 1, 2, ... and so on. Suppose
that 30 new ants come to B from A, and 30 to D from E at each time unit,

that each ant walks at a speed of one per time unit. Further, suppose that,
66

Thesis background

while walking, an ant lays down at time t a pheromone trail of intensity

one, which, to make the example simpler, evaporates completely and

instantaneously in the middle of the successive time interval (t+1, t+2).

/\5

d—10 T
A

T =0

10 ants

15

\z:ms

N7

15
ants

15 15
ants T ants
30
A ants
(b)

T=1 30 ants

10 20
ants T ants
30
A ants
(c)

FIGURE 16. Pheromone Trails

At t=0 there is no trail yet, but 30 ants are in B and 30 in D. Their choice

about which way to go is completely random. Therefore, on average, 15

ants from each node will go towards H and 15 towards C (Figure 16b).

At t=1 the 30 new ants that come to B from A find a trail of intensity 15 on

the path that leads to H, laid by the 15 ants that went that way from B and a

trail of intensity 30 on the path to C. This trail has developed as the sum of

the trail laid by the 15 ants that went that way from B and by the 15 ants

67

Thesis background

that reached B coming from D via C (Figure 16c). The probability of
choosing a path is now biased, so that the expected number of ants going
toward C will be the double of those going toward H: 20 versus 10

respectively. The same is true for the new 30 ants in D that came from E.

This process continues until all of the ants will eventually choose the

shortest path.

The idea is that, if at a given point an ant has to choose among different
paths, those which were heavily chosen by preceding ants (that is, those
with a high pheromone level) are chosen with higher probability.

Furthermore, high pheromone levels are synonymous with short paths."

2.4.2 Applications of the Ant System

Most work on the Ant System has been applied to the Travelling Salesman Problem!.
This is a classical problem and is often used for the assessment of heuristics as it is NP-
Complete. Dorigo shows that the Ant System can be applied to the TSP, and other
problems, which can be expressed in graph-partitioning terms. Much more detail on this

work is presented in [Gambardella 95], [Dorigo 96].
Dorigo’s conclusions on the results of the Ant System on the TSP are:

Within the range of parameter optimality, the algorithm always finds very good

solutions for all of the tested problems.

I. This, however, is changing and several potential applications are being researched.

68

Thesis background

The algorithm quickly finds good solutions, while not exhibiting stagnation behaviour -

the ants continue to search for new, possibly better tours.

With increasing problem size, the sensitivity of the parameter values to the problem

dimension has been found acceptablel.

The work on the TSP is directly transferable to the asymmetric TSP. This problem is
significantly more difficult than the TSP. Typically the TSP can be solved for graphs with
several thousand nodes, while the ATSP is only solved optimally in cases where there are

several dozen nodes.

Application to the ATSP required no modifications to the basic AS algorithm. The
results of applying the algorithm to this problem were very close to (within 3.3%) the
known optimal tour, and were found within acceptable time. In fact, the application of the

AS to other problems have also required little or no modification to the basic algorithm.

2.4.3 Ant System Summary
The Ant System is a relatively new search methodology based on a distributed

autocatalytic process that can be applied to the solution of classical optimization
problems. The general idea underlying the AS search paradigm is that of a population of
agents each guided by an autocatalytic process directed by a greedy force. If an agent were
to search alone, the autocatalytic process and the greedy force would tend to make the

agent converge to a sub-optimal solution with exponential speed. When agents interact it

1. Itis our experience that an AS can be improved by allowing control parameters to self-adapt during the
search process. This is described in a later section.

69

Thesis background

appears that the greedy force can give the right suggestions to the autocatalytic process
and facilitate rapid convergence to very good, often optimal, solutions without getting
stuck in local optima. We speculate that this behaviour arises because information gained
by agents during the search process is used to modify the problem representation. In some
sense, the region of the space considered by the search process is reduced. Even if no tour
is completely excluded, bad tours become highly improbable, and the agents search only

in the neighbourhood of good solutions.
The main contributions of the Ant System are the following:

e Positive feedback is employed as a search and optimization tool. The idea is that, if at a
given point an agent (ant) has to choose between different options, and the one actually
chosen proves to be good, then in the future that choice will appear more desirable than
it was before.

e Synergy can arise and be useful in distributed systems. In AS, the effectiveness of the
search carried out by a given number of cooperative ants is greater than that of the
search carried out by the same number of ants, each one acting independently from the
others.

e The Ant System can be applied to diverse combinatorial optimization problems with a
graphical representation.

As already pointed out, the research on behaviour of social animals is to be considered
as a source of inspiration and as a useful metaphor to explain our ideas. We believe that,
especially if we are interested in designing inherently parallel algorithms, observation of
natural systems can be an invaluable source of inspiration. Neural networks, genetic
algorithms, evolution strategies, immune networks, simulated annealing are only some
examples of models with a “natural flavour”. The main characteristics, which are at least
partially shared by members of this class of algorithms, are the use of a natural metaphor,

inherent parallelism, a stochastic nature, self-adaptation, and the use of positive feedback.
70

Thesis background

The algorithms introduced later in this thesis can be considered as new members of this
class. All this work in “natural optimization” fits within the more general research area of
stochastic optimization, in which the quest for optimality is traded away for computational

efficiency.

2.5 Autopoiesis

While the previous two sections have provided support for the value of studying
naturally-occurring systems and using them for designing multi-agent systems, they
provide no insight into systems that are truely autonomous. Other concepts are required in

order to explain autonomy.

Autopoiesis, derived from the words auto (meaning self) and poiesis (meaning creation
or production), is attributed to Maturana and refined along with his student Varela.

Formally, autopoiesis can be defined as:

“An autopoietic system is organized (defined as a unity) as a network of
processes of production (transformation and destruction) of components

that produces the components that:

1. through their interactions and transformations continuously regenerate
and realize the network of processes (relations) that produced them;

and

2. constitute it (the machine) as a concrete unity in the space in which
they [the components] exist by specifying the topological domain of its

realization as such a network.” ([Varela 80], page 79).

71

Thesis background

While the first part of the definition appears straightforward, the second is certainly not.
The language is obscure, possibly owing to the authors’ training -- philosophy. The

definition, we believe, requires some explanation.

An autopoietic machine exists in space and time and is capable of self creation and
maintenance. Such machines specify their own organization and will attempt to maintain
that organization over time. It is important to note that autopoietic systems maintain their
structure and their organization; i.e., the relationships between structural elements. While
not explicitly stated in the definition, it can be inferred from [Varela 80] that the network
of interactions imply local information processing, a property which we find attractive and
important to the ideas documented here. The definition refers to a network, or graph, of
interactions, which could easily be thought of as a set of chemical reactions, for example.
Using this as an example, the second part of the definition restated becomes the time and
space evolution of the set of chemical reactions describing the system. In other words, the
machine exists as a consequence of “running” the program comprised of the processes

mentioned in the first point of the definition.

Living systems are autopoietic (as observed by Maturana and Varela) and it is this
constitution from which autonomy naturally arises. Autonomy, being more general than

autopoiesis, can be defined according to Varela, as:

“...defined as a composite unity by a network of interactions of components
that (i) through their interactions recursively regenerate the network of

interactions that produced them, and (ii) realize the network as a unity in

72

Thesis background

the space in which the components exist by constituting and specifying the

unity's boundaries as a cleavage from the background...”

Again, the language is somewhat obscure but says essentially the following. Autonomy
implies a clear separation of the autopoietic system from its environment: think of a cell as
an example. The rules of regeneration are stored inside of the boundary between the
machine and its environment. From our perspective, the most important word in the above
quote is the word recursive; i.e., mutual dependencies between structural elements have to
be present in order for self-generation to occur. Here, think of an organ as an example:
organs regenerate by creation of new cells. Alternatively, think of biochemical pathways
in the human body. With input of energy, these pathways regenerate cells and maintain the
body’s organization. This will be more formally presented when chemical abstractions are
described in the next section. A key observation with regard to autopoietic systems is that
they are self-maintaining, all other functions are considered less important than the (re-)
generation of self. This is a very attractive property when we consider the use of
autopoietic principles for control, management and reconfiguration of a network, for

example. Varela says:

“... I see autopoiesis as one possible form of autonomy (or organizational
closure, as defined later), and that this term should be restricted to systems,
whether natural or artificial, that can be characterized by a network that is,

or resembles very closely, a chemical network.” ([Varela 80], page 15).

In this quote we have inspiration for the architecture described in the next chapter and a

73

Thesis background

reason for investigating chemical metaphors as described in the next section. Varela, in the
above quote, brings together the ideas that self maintaining systems can be represented
chemically, both in terms of state and time evolution of that state, and that chemical

reactions enable complex computation.

The importance of chemical reactions needs to be noted here as it implies that chemicals
are defined (which are symbols, a point revisited in the next section and following
chapter) and a concentration of that chemical exists within the environment. Reactions
imply chemical concentration changes, this being the sensory mechanism by which
mutual awareness and communication in autopoietic systems occurs. Stated another way,
language or communication arises by attention; i.e., perception of changes, not absolute

values in the environment.

Self organization as order through fluctuations is well known, especially through the
work of Prigogine and Nicolis [Prigogine 77] and Eigen [Eigen 79], all of whom consider
simple chemical systems in their exploration of self organizing systems. The value of

chemistry -- chemicals and chemical reactions - seems, once again, to present itself.

2.6 Chemical Abstractions

The previous section, while largely philosophical in outlook and content, nevertheless
provides support for the value of chemical abstractions. This section explores previous
related work that exploits the chemical metaphor. The work presented in this section can

be classified along the lines of the completeness of usage of the metaphor. For example,

the Chemical Abstract Machine! (CHAM) of Berry and Boudol [Berry 92], and

74

Thesis background

Algorithmic Chemistry of Fontana [Fontana 91], deal with chemicals purely as symbols
and reactions as rewriting systems. Prigogine and Eigen, in contrast, are interested in
chemical reactions and their properties as they relate to self-organizing systems. In their
work, both the chemical and its concentration are studied and self-organization is viewed
as patterns of concentrations of particular chemicals; e.g., the Brusselator scheme

[Brusselator].

2.6.1 The Chemical Abstract Machine
The Chemical Abstract Machine, a development of the Gamma formalism [Benatre 88],

was introduced in order to increase the abstraction with which programs are specified,

removing as far as possible any sequential bias in the resulting design.

The Gamma formalism is intended to capture the intuition of computation as the global
evolution of a collection of atomic values interacting without constraint. Gamma is, then,
a kernel language which relies upon the chemical metaphor. The unique data structure in
Gamma is the multiset which can be seen as a chemical solution. A simple program is a
pair (reaction condition, action). Execution proceeds by replacing the multiset elements
satisfying the reaction condition by the products of the reaction. The result is obtained

when a stable state is reached, that is when no further reactions can take place. Gamma is

declarative! in nature and is designed to express the “idea” of an algorithm rather than its

1. Derived from the Gamma formalism.

1. The Prolog programming language is an example of a declarative language which uses first order logic. However, it
fails to qualify as a Gamma language as a result of the serial nature of its clausal evaluation: i.e.. clause order is
important. [f clauses were evaluated without regard to order and in parallel. G-Prolog would provide many of the
facilities intended for Gamma. Logic programming implementations of Gamma have been proposed; e.g., Gamma-
log.

75

Thesis background

detailed implementation. It is intended that there should be no hidden control in Gamma.

A simple implementation of Gamma would be as shown below:

X=Xy, '_)f(xlm,xn) = R(JCI...,)Cn)

where R(x, ... X,,) is the reaction on the multiset (xy, ... X,), and f (xy, ... x;) the products

While tuples remain to be processed
do

choose a tuple (xy, ..., Xx,) not yet processed;

if R (x, .., x,) then

remove (X, ..., Xp) from M
replace them by f (x, ..., x)
end

of the reaction.

CHAM extends the Gamma formalism with notions of a membrane and an airlock
mechanism. CHAM was originally proposed by Berry and Boudol to describe the
operational semantics of process calculi. Membranes are used to encapsulate solutions and
to force reactions to occur locally. A membrane can be used to introduce a multiset of
molecules to its containing environment. Stated another way, a solution can be
transformed into a single molecule. The airlock mechanism is used to describe
communications between an encapsulated solution and its environment. The main role of
the airlock is to allow a molecule to be visible from outside the membrane and thus take
part in a reaction in the embedding solution. The need for membranes and airlocks arose

76

Thesis background

from the description of Communicating Concurrent Systems (CCS) in CHAM. This added
machinery significantly increases the ability of the formalism to deal with large systems as

it provides for scoping rules.

2.6.2 Other Ideas from Chemical Computation
The attractions of chemical computation have been observed long before the writing of

this thesis. Work on Information Chemistry by Winter [Winter 97] of British Telecom
indicates the potential for industrial exploitation of speculative ideas of this kind while
Fontana’s work on Algorithmic Chemistry [Fontana 91] attempts to span logic and the
formalized computation described above in a way that formalizes chemical evolution.
Work on self organizing algorithms derived from RNA interactions [Banzaf 95] also

demonstrates a keen interest in chemical computation.

2.7 Adaptation and Learning

Many techniques exist for adaptation and learning. The two sections which follow
represent the techniques that have been employed in this thesis in order to improve the
performance of agents in their chosen problem domain using feedback from the results of
employing particular actions in the environment. The first section is doubly relevant to
this thesis in that it deals with a schema concept -- or set of solutions -- a concept referred

to extensively in the section on chemistry in the next chapter.

2.7.1 Genetic Algorithms
Genetic algorithms (GAs) [Holland 75] were originally proposed as a search technique

for use in optimization problems. Genetic algorithms are stochastic search algorithms

77

Thesis background

whose search methods model aspects of Darwiinian evolution. As stated in [Davis 87]:

“... the metaphor underlying ggenetic algorithms is that of
natural evolution. In evolutiorm, the problem each species
faces is one of searching for beneficial adaptations to a
complicated and changing enwironment. The ‘knowledge’
that each species has gained is embodied in the makeup of
the chromosomes of its membens.”

The basic principle behind genetic algorithmns is to do what Nature does. The fitter the
individual, the more likely it is to survive to b-e able to reproduce and thereby ensure that
its genes survive to the next generation. While this section provides a brief introduction to
genetic algorithms, more complete description=s can be found in [Goldberg 89] and [White

93].

Genetic algorithms use a vocabulary dravwn from natural genetics. We talk about
individuals (or genotypes) in a population. These individuals are sometimes also referred
to as chromosomes or strings. In genetic algorithms, a population consists of a set of single
chromosomes. Chromosomes are made up of™ units called genes or features most often
arranged in a linear formation or string. A feature is just a set of genes. Each gene controls
the inheritance of one or more traits. The gene= are said to express a given feature. Genes
of certain features are located at specific locations on the chromosome - these are called
loci or string positions. A feature which can ha ve several values means that the associated

genes can take on many values. The values which a gene can take are called alleles.

An evolution process run on a population of such chromosomes corresponds to a search
through a space of potential solutions. Thes search process requires balancing two
conflicting objectives: exploiting the best soluations at any point during the process and

78

Thesis background

exploring the search space. Hill climbing is an example of a strategy which retains as
much of the best solution to date as possible when moving to the next solution - only small
perturbations are made and the results retained only if improvement is seen. Consequently,
it neglects the exploration of the search space and only guarantees to obtain an optimal
solution if the solution space contains a single peak. Random search, on the other hand,
explores the solution space without regard to the structure of the best solution to date nor
to the region of the space where it was obtained. Genetic algorithms combine both

solution exploitation and exploration of the search space in an extremely effective way.

Genetic algorithms have been used in a diverse set of optimization problems such as
wire routing, travelling salesman problems, network link design [Coombs 87], [Davis

87a], [White 99a] adaptive control and many others.

Genetic algorithms differ from more convectional search algorithms in that they work
with a population of chromosomes (solutions) rather than a single chromosome (solution).
Genetic algorithms also work indirectly, in that problem parameters are encoded before
being manipulated by genetic operators. Finally, genetic algorithms differ from most
conventional search strategies in that they use probabilistic transition rules, not

deterministic rules. As such they belong to the class of stochastic search algorithms.

Restricting the discussion to chromosomes represented as bit strings, each chromosome
is the same length and each gene can take values drawn from {0,1} - the so called binary

alphabet. In this case, the chromosome is represented by a bit string and for a chromosome

of length I, 2! states can be represented.

79

Thesis background

Genetic algorithms are often characterized as algorithms that are better than hill

climbing algorithms because they manipulate combinations of bit strings called schemata.

If we consider

the binary alphabet for the moment, the alphabet of associated schemata

would be {0,1.#}, where the # symbol indicates unknown. Figure 17 shows a schema and

two possible strings which are examples of it. A schema represents a class of strings.

4

o l1 1 1ol O

0 #

Schema b o 0] l 0

FIGURE 17. Examples of schema

The genetic algorithm can best be described by the program below:

Program GeneticAlgorithm()

Beg

in
initializePopulation() ;

evaluatePopulationFitness() ;

while notFinished() do

End

Begin

for i:= 0 to populationSize by 2 do

Begin
offspringl := randomRouletteWheel () ;
offspring2 := randomRouletteWheel () ;
if random() < crossoverProbability then

newOffspring := crossover (offspringl, offspring2);

newPopulation[i] := mutate (newOffspring(0]);
newPopulation[i+1l] := mutate (newOffsptringl(l]);

End

population := newPopulation;

evaluatePopulationFitness() ;

End

The significant procedural elements of the program are described in the following

80

Thesis background

sections.

2.7.1.1 initializePopulation
The initializePopulation procedure is quite simple; we create a population of

chromosomes where each chromosome is a binary vector of / randomly-generated bits.

2.7.1.2 evaluatePopulationFitness
The evaluatePopulationFitness procedure uses the fitness function referred to above in

order to compute the fitness of each chromosome in the population.

2.7.1.3 randomRouletteWheel
The randomRouletteWheel function is used to choose which chromosomes from one

generation should be reproduced in the next one. This is done by calculating an imaginary

roulette wheel where each chromosome has a probability of selection calculated from:

populationSize
pi) = ==, fy, = 2 f(i)/ populationSize

i=0

This is called fitness proportional selection. Viewed as a roulette wheel, for a population

of five chromosomes, Figure 18 might be visualized:

In order to generate the new population, the imaginary roulette wheel is spun a total of
populationSize times and each time wherever it stops, that chromosome is reproduced in
the new population. Referring to Figure 18, chromosome 5 should be reproduced in the
next generation. In fact, chromosome 5 occupies approximately 40% of the roulette wheel

and we would expect in the neighborhood of that percentage of the new population to be

81

Thesis background

chromosome 5. Obviously, several chromosomes will appear multiple times in the new
population and it is just this mechanism - survival of the fittest - that causes highly fit

members of the population to dominate subsequent generations.

FIGURE 18. Population Roulette Wheel

2.7.1.4 crossover
The crossover procedure takes two chromosomes as input and generates two new

chromosomes as output. The crossover operation occurs by selecting a position between 1
and I-1 in the first string. This identifies two substrings A; and A,, where A A, is the
same as the original string A. The same position is used for string B, generating the

substrings B; and B,. The crossover procedure returns the strings A|B, and BjA,.

Graphically, this procedure is shown in Figure 19.

Crossover Point

1] 0] o] 1] 0
0} 1| 0] 1} O @ 0

FIGURE 19. Crossover in action

As can be seen from the above example, completely different chromosomes can be

82

Thesis background

returned as a result of the action of this procedure.

2.7.1.5 mutate
The mutate procedure allows modified alleles to be introduced to the new population.

The mutate procedure takes a chromosome and for each bit executes the following:

if random() < mutationProbability then

toggleBit () ;
The mutation operation ensures that the population maintains some diversity as we

proceed from generation to generation.

2.7.2 Reinforcement Learning

In models that employ reinforcement learning, such as the fault localization agent uses
in chapter 5, an agent is connected to its environment via sensors and effectors as shown in
Figure 20 below. During each interaction step, an agent has a knowledge of its state, s,
receives input, {, performs some action, a, and receives some reward, r. The action

performed by the agent changes its environment which leads to the scalar reward signal, r.

R <__________._Agent

FIGURE 20. Reinforcement Learning Agent

83

Thesis background

The reward signal is also referred to as the reinforcement signal. The goal of
reinforcement learning is to adapt the agent’s behavior, B, such that it chooses actions that

tend to increase the long-run sum of values of the reinforcement signal.

The environment consists of a set of states, S, that may or may not be completely
observable. The agent has available to it a set of actions, A. There is also a set of

reinforcement signals; either reals or, more typically, the set {0,1}.

Reinforcement learning is a form of unsupervised learning, where each interaction with
the environment causes incremental learning. The agent is given an immediate reward and
the new state. However, no information is provided about the long-term best action for the
initial state. It is necessary for the agent to gather useful experience about the possible
system states, actions, transitions and rewards actively in order to act optimally. Another
difference from supervised learning is that on-line performance is important: the
evaluation of the system is often concurrent with learning. The goal, then, for the agent is

to learn the best policy to employ, a policy being a mapping of states to actions.

The problem that has to be solved by a reinforcement learning agent is that of temporal
credit assignment, a problem common to many machine learning processes. How long
should an agent wait before apportioning credit for a particular action. Many techniques

have been proposed, two are described in the following sections.

2.7.2.1 Adaptive Heuristic Critic and TD(A)

The adaptive heuristic critic is an adaptive version of policy iteration. In it, the value-

function computation is no longer implemented by solving a set of linear equations, but is

84

Thesis background

instead computed by an algorithm called TD(0). The architecture for this approach is
given in Figure 21. The architecture consists of two components: a critic (labeled AHC),
and a reinforcement-learning component (labeled RL). The reinforcement-learning
component can be an instance of any of the k-armed bandit algorithms, modified to deal
with multiple states and non-stationary rewards. Instead of acting to maximize
instantaneous reward, an agent acts to maximize the heuristic value, v, that is computed by
the critic. The critic uses the real external reinforcement signal to learn to map states to
their expected discounted values given that the policy being executed is the one currently

instantiated in the RLL component.

—— AHC

> RL

FIGURE 21. Adaptive Heuristic Critic Architecture

The correspondence with policy iteration can be seen if we consider the policy, T,

implemented by the RL as being fixed with the critic learning the value function V for

the policy. Once optimized, the critic is fixed and the RL allowed to learn a new policy 1’.
This is unrealistic, and most implementations allow simultaneous operation of AHC and

RL components.

85

Thesis background

The value of a policy is determined through use of experiences; that is, a knowledge of
the initial state (s), the final state (s’), the action taken to move from initial to final states
(a) and the reward (r) received from the environment. Sutton’s 7D(0) [Sutton 88] rule is

used to update state values:

V(s) < V(s)+a(r+yV(s)—V(s))

Whenever a state s is visited, its estimated value is updated to be closer to r + YV(s’),
since r is the instantaneous reward received and V(s’) is the estimated value of the actually
occurring next state. This is analogous to the sample-backup rule from value iteration--the

only difference is that the sample is drawn from the real world rather than by simulating a

known model. The key idea is that r + YV(s’) is a sample of the value of V(s), and it is
more likely to be correct because it incorporates the real r. If the learning rate o is slowly
decreased, and the policy is held fixed, 7D(0) is guaranteed to converge to the optimal
value function. The TD(0) rule is really an instance of a more general class of algorithms
called TD()), with A = 0. TD(0) looks only one step ahead when adjusting value estimates;
although it will eventually arrive at the correct answer, it can take quite a while to do so.

The general rule 7D(A) is similar to the TD(0) rule given above, but is applied to every

V(u) « V(u) + o(r+yV(s’) - V(s))e(u)

state according to its eligibility e(«) rather than merely to the previous state. Many

86

Thesis background

eligibility trace functions have been proposed, one is shown below:
' 1
e(s) = (Ay) O_ _,where d =
z 5 Sk 5> Sk 0, otherwise
k=1
In this thesis, 7D(0) is the temporal difference mechanism used, owing to its simplicity

and the relatively small number of states in our problem state space.

2.7.2.2 Q-learning
The adaptive heuristic critic component of an on line learning system shown in Figure

21, can be implemented using Watkins’ Q-learning algorithm [Watkins 89], [Watkins 92].
Q-learning algorithms are easy to implement and are often used in on-line controllers.
Defining O7(s, a) to be the expected discounted reinforcement of taking action 4 in state s,
then continuing with choosing actions optimally. The Q learning rule is given by:

Q(s,a) <« Q(s,a) +o(r+y max, Q(s’,a’)—Q(s, a))

If each action is executed in each state an infinite number of times on an infinite run and

a is decayed appropriately, the Q values will converge with probability 1 to Q". When the
Q values are nearly converged to their optimal values, it is appropriate for the agent te act
greedily, taking, in each situation, the action with the highest Q value. During learning,
however, there is a difficult exploitation versus exploration trade-off to be made. There are
no good, formally justified approaches to this problem in the general case; standard
practice is to adopt ad hoc methods. For example, when reinforcement from the

environment tends to zero, or falls below some threshold value, we act greedily, taking the

87

Thesis background

action with the highest Q value in a given state.

2.7.2.3 Discussion
AHC architectures seem to be more difficult to work with than Q-learning on a practical

level. It can be hard to get the relative learning rates right in AHC so that the two
components converge together. In addition, Q-learning is exploration insensitive: that is,
that the Q values will converge to the optimal values, largely independent of how the
agent behaves while the data is being collected. The implication is that, although the
exploration-exploitation issue must be addressed in Q-learning (as in all learning
methods), the details of the exploration strategy will not affect the convergence of the
learning algorithm. For these reasons, Q-learning is the most popular and seems to be the
most effective model-free algorithm for learning from delayed reinforcement. It does not,
however, address any of the issues involved in generalizing over large state and/or action

spaces. In addition, it may converge quite slowly to a good policy.

88

CHAPTER 3 Biologically inspired Architectures
for Mobile Agents

3.1 Overview

The advantages of mobile agents have largely been discussed in terms of technology
[Chess 97] and the value of individual agent autonomy [Bieszczad 98] as well as a novel
problem solving technique [White 99c]. It is possible to view them as an approach to
problem solving where mobility and interactions with the network locally are stressed.
Similarly, coordination mechanisms for mobile agents have been discussed in terms of
blackboard-style algorithms, with the agents tending to be rational, having a knowledge of
self and a goal to be achieved [O’Hare 96]. In fact, several implementations of such
systems are being investigated by the mobile agent community [Picco 98]. Symbolic
systems of this type are often brittle, unable to cope with the failure of a single agent and
may depend upon planning by a central agency in order to achieve coordination. Such
systems often have to cope with the latency problems inherent in centralized systems. We

believe that these limitations undermine the value and power of mobile agent systems.

89

Biologically inspired Architectures for Mobile Agents

It is difficult to argue against the effectiveness of many naturally occurring multi-agent
systems and, in particular, systems exhibiting mobility. Societies of simple agents are
capable of complex problem solving while possessing limited individual abilities [Franks
89], [Holldobler 94]. They often possess no central coordination of activity; problem
solving is distributed. Societies of such mobile agents are found at all levels of
evolutionary complexity, from bacteria to ants and beyond. It is common in such societies
to observe social coherence although when behavior of the individual is observed, a large
stochastic component is present. Stated another way, such societies exhibit emergent

behavior.

Problem solving by societies of simple agents has a number of common characteristics.
Inter-agent communication is local; no single agent has a global view of the world.
Communication is also achieved using simple signals and these signals are time
dependent; e.g., they usually decay with time. Signal levels provide the driving force for
migration patterns. Individual agents sense and contribute signal energy to the
environment. [n this description of the problem solving process, there are two distinct and
important agent characteristics. First, there is the role of the agent within the problem
solving process; i.e., how the work of problem solving is distributed to a diverse set of
agents. Second, the degree to which the actions of one agent reinforce the actions of other

agents in the society of problem solvers is significant.

The appeal of swarms of biologically inspired agents for industrial problem solving has

recently been appreciated [Parunak 98]. Research into the problems and potential of

90

Biologically inspired Architectures for Mobile Agents

multiple, interacting swarms of mobile agents is just beginning [White 98d].

In the remainder of this chapter, we briefly describe the principles of Swarm Intelligence
and Stigmergy. We then use these principles as motivation for the Synthetic Ecology of
Chemical Agents (SynthECA) and provide arguments as to the value of the abstraction.
SynthECA is then used to indicate how several interacting swarms of agents would be

capable of problem solving in networks.

This chapter introduces a new architectural description for an agent that is chemically
inspired and proposes chemical interaction as the principal mechanism for inter-swarm
communication. Agents within a given swarm have behavior that is inspired by the
foraging activities of social insects, specifically ants, with each agent capable of simple
actions and knowledge of a global goal is not assumed. The creation of chemical trails is
proposed as the primary mechanism used in distributed problem solving arising from self-
organization of swarms of agents. The chapter proposes that swarm chemistries can be
engineered in order to apply the principal ideas of the Subsumption Architecture [Brooks
91] in the domain of mobile agents. The chapter outlines applications of the new
architecture in the domain of communications networks and describes the essential
elements of a mobile agent framework that is being considered for its implementation.

Application details are presented in chapters 4, 5 and 6.

3.2 Emergent System: Principles and Mechanisms

In the previous chapter the concept of swarm intelligence and self organization of a large

number of simple agents was introduced and a number of examples of such systems

91

Biologically inspired Architectures for Mobile Agents

described. Many other systems have been documented but this section provides an
analysis of the common characteristics of these systems. These common characteristics

are then used as motivation for the architecture proposed in this thesis.

In the following paragraphs we discuss principles that should drive a multi-agent
architecture such that it should have the potential for exhibiting emergent behaviour.

These properties or principles include:

e decentralization and aggregation
e small in size (or function)

e specialized

e behaviourally diverse

e information sharing

e responsive to flows

According to [Kelly 95], the ability of a multi-agent system to solve problems in some
domain is distributed across and among the components of such a system. Problem
solving is not explicitly embodied in any one agent. Looking at the problem solving
process for complex adaptive systems (CASs) from another perspective, they are not --
according to Holland [Holland 96] -- constructed in a monolithic fashion but with small
units of behaviour that this thesis chooses to describe as agents. Importantly,
decentralization and aggregation are mutually supportive properties. The behaviour in a
decentralized, aggregated complex system is distinct from the components’ individual
behaviours. The global behaviour of the system of agents is non-linear; the interactions are
not simply additive. Another way of stating this [Resnick 94] is to observe that a flock is

not a large bird (agent); flocking is not part of the behaviour of the individual bird (agent).

92

Biologically inspired Architectures for Mobile Agents

Similarly, a traffic jam is not a collection of cars. [Kelly 95] believes that functionality of
systems exhibiting emergent behaviour grows incrementally, possibly with layers of
higher order functionality being added over time, perhaps similiar in philosophy to the
principle of Subsumption [Brooks 91]. In systems such as these, control is bottom up and

massive concurrency exists in the system.

In fact, the massive concurrency and multiple simultaneous (possibly conflicting) goals

generally facilitate robust behaviour in a dynamic environment. Agents can be thought of

as competing for control within the problem solving domain. Diverse behaviour! of agents
allows for a number of possibilities. Firstly, randomness can help create order [Resnick
94]. Secondly, competitive superiority, i.e., the measurement of the desirability of given
behaviours in an environment at a given time can be used to guide the interactions of
agents in the future [Kelly 95]. In other words, It is necessary that the environment
provide feedback to the agents based upon the actions taken by those agents. Finally,
diverse adaptive behaviour facilitates robust problem solving as it allows for constant
exploration in an ever-changing environment. However, diverse behaviour may also lead
to sub-optimal system response (at least in a formally proveable sense) in a static

environment [Kelly 95].

The environment, however, is an active process [Resnick 94] that impacts the behaviour
of the system and is not merely a passive communication channel between agents. An

example of an active environment is the pheromone concentrations close to an ants’ nest.

1. Diverse construction is also a differentiating factor. Changing the construction of an agent alters its ability to imple-
ment any one behaviour more or less efficiently: i.e., resource consumption changes.

93

Biologically inspired Architectures for Mobile Agents

These volatile chemicals evaporate and diffuse away from the nest. The processes of
evaporation and diffusion are not ant behaviours, they are the behaviours of the
environment -- in this case, the laws of physics and chemistry. In the case of an active
environment, a system should constantly balance stability with change, otherwise it will
tend to degenerate. Given response signals from the environment, positive or negative
feedback for individual agent actions is possible. Conventional control theory espouses
the view that negative feedback is preferable for system stability; however, given the
previous sentence indicating the desirability of exploration (disequilibrium), positive
feedback may be required for self-organization. In fact, it may be critical. For example, the
foraging behaviour of ants depends upon a positive feedback mechanism. Action selection
is based, in part, upon signal gradients in the environment and often by an agent moving
through that environment. Stated another way, an agent adjusts its migration strategy
based upon local differences (or fluctuations) in the strength of signals of interest to that

agent.

Holland identifies three mechanisms that he believes necessary for emergent properties
in complex adaptive systems. These mechanisms all relate to the sharing of information
between agents. Firstly, agents are able to recognize and differentiate among one another.
Secondly, the internal structure of an agent in a complex adaptive system enables it to
anticipate changes in its environment. Finally, an agent’s internal model is made up of
small reusable modules that allow it to express a rich set of alternatives with a limited

representational vocabulary.

94

Biologically inspired Architectures for Mobile Agents

3.3 Goals for and Attributes of a Self Organizing Agent System

Traditionally, functional decomposition of system activities has lead to goals or “things
to be achieved” being ascribed to individual agents within the agent system. This has
caused two things to occur. Firstly, the environment has tended to be considered as a
communication conduit and this, we have seen, ignores its active nature. Secondly,
localizing functionality within one (or a few) agents, tends to preclude emergent
behaviour as, in some sense, the behaviour is “programmed in.” The functional
decomposition approach may also be totally in error, as in the example of traffic jam
modelling. Where, in such a system, is the functionality for traffic jam creation explicitly
represented in the behaviour of the car or in the “car system?” It cannot be, the behaviour
is emergent. The temptation to equate the aggregation of behaviour with the aggregation
of agent function can, then, lead to erroneous expectations of system behaviour in many

cases.
Aggregation of agent behaviour is important for emergence, agent aggregation is not.

The next several sections describe the important agent characteristics that an

architecture should provide in order to support self emergence.

3.3.1 Agent Size
Why is agent size important? The answer to this question, and thereby a design principle

for our architecture, lies in the observation that human software engineers find it difficult
to design large software systems that exhibit minimal decomposition. Monolithic systems

become increasingly difficult (and expensive) to maintain and tend to exhibit decreasing

95

Biologically inspired Archiitectures for Mobile Agents

robustness as their overall complexity increases. Large populations of simple agents can
exhibit a wide range of behaviours that depend upon agent density and migration rates for
example that can lead to a wide range of emergent behaviours. Encapsulation, a concept
from the world of Object Oriented programming languages, appears useful here. What is
required is a clear boundary between the agent and its environment in order that signals
may flow (possibly filtered) between the two. Interfaces are important in that they limit
the exposed behaviour of an object (or agent). In other words, what we require is
containment with selective sharing of information or, in other words, an airlock. The word
airlock is chosen deliberately here as it the name of the mechanism used in CHAM (see
section 2.6.1) for communication of information from one multiset to another. We should
be careful to note here that we are referring to agent-to-agent communication here, not
swarm to swarm as thie concept of a swarm is a loose one, arising as a consequence of a set

of agents sharing a particular (unknown to them) goal.

Agent size is kept small by having limited behaviour within it while providing an ability
to communicate through an active environment. Small size therefore implies the need for

agent interaction as no single agent knows how to solve a complex problem.

3.3.2 Agent interactiom
Agents should be able to communicate effectively; however, point to point

communication is not implied here. In order to communicate effectively, a common
representation for agent interaction needs to be provided. While KQML (and other) agent

communication languages (see section 2.2.5.3) allow efficient message transport in a

96

Biologically inspired Architectures for Mobile Agents

standardized way, processing of the message is implementation dependent and the
ontology problem remains ever present. What is provided, and is considered important in

this thesis, is the ability to match general patterns within the message body.

Such a representation for interaction should provide for two things; firstly, it should
support pattern matching and secondly, message processing should facilitate agent
aggregation. In some sense, our model of a multi-agent system should directly support
aggregation, since an environment (and its associated agents) should become a higher

level agent (in a logical sense) by defining its inputs and outputs to another environment.

Stated another way, agents should be arranged in layers. Another possibility is

absorption, the physical integration of one agent within another.

A Increasing abstraction

X/

FIGURE 22. Aggregation using CHAM-like principles

/V

/
X+A » Y+A

3.3.3 Agent Aggregation
Using an airlock mechanism to facilitate sharing of information also provides a

mechanism for aggregation. If we observe the processing mechanism present in CHAM --
that of the multiset transform -- we see that links between layers are implicitly defined by
the transformations defined within the multiset. The symbols allowed through the airlock

represent the linkages between a layer above or below it. The transformations within the

97

Biologically inspired Architectures for Maobile Agents

agent represent implicit linkages between layers above and below it.

This is shown graphically in Figure 22. In it, the symbol X is exported from a lower
layer, is imported, and is transformed to Y which is, in turn, exported to the layer above.

The symbol A represents a catalyst — a precondition -- for the transformation of X to Y.

Absorption also represents a mechanism for aggregation. However, it has a
disadvantage. If an absorbed agent represents a building block within a specific problem
domain, absorption potentially removes a building block from the pool of agent expertise.
Once absorbed, other agents may not be able to function effectively. Absorption can be
useful when a more desirable building block is constructed; a process similiar in principle
to the use of Automatically Defined Functions (ADFs) in Genetic Programming (GP)

[Koza 92].

3.3.4 Agent Scope
Agents in naturally occurring systems sense and act locally. They do this for two

reasons. Firstly, the energy requirements for doing so are much lower when comparing
local to wider-ranging scope. The technology required for long range communication is
also generally more complex. Secondly, the latency associated with long range
interactions is much greater than with short range interactions. This latter observation
makes learning more difficult as a consequence of the need to make multiple decisions

before the reinforcement signal from the initial action is received. Longer response times

also expose the agent to a greater risk of captureI if it decides to wait for a response from

1. We are thinking here of the classical predator prey environments that exist in nature.

98

Biologically inspired Architectures for Mobile Agents

the environment before moving on. Evidence to support this view can be found in the
correlation of sensor scope to agent performance [Takashina 96] and in the sorting

behaviour of ants [Deneubourg 90].

Local sensing can also reduce memory requirements as shown in the next section. The
most important implication of locality of agent sensing and action is decentralized system
control. Decentralization and distribution is axiomatic (in terms of importance) to
Holland, Resnick and Kelly and, in this thesis, we argue the need for mobility in such

agent systems.

3.3.5 Agent Memory

Agents must be capable of forgetting. It is important to note that an agent’s state must be
limited to a time horizon, i.e., it cannot remember everything that it has experienced.
Remembering everything would lead to excessive memory requirements and, as shown
below, can actually degrade performance. Equally important is the understanding that

knowledge of events decreases in relevance as time passes.

We observe this in nature, pheromones evaporate leading to attenuation of gradients in
the environment. Stated in physical terms, order tends to dissipate without energy

expenditure, disorder then dominates.

In the simulated sorting behaviour of ants, memory must be limited in order to restrict

the number of items carried by the ant and the number of steps “remembered” must be

small otherwise sorting performance will be degraded. Also, with too many agentsI too
many items may be carried leaving too few in the environment to form nuclei for

99

Biologically inspired Architectures for Mobile Agents

developing piles. In other words, agent memory must be sufficiently large that
environmental gradients can be sensed but not so large that these gradients contain no

useful information.

Another dimension of memory is that of collective memory, i.e., the spatial and temporal
patterns stored within a population of agents. There is obviously a linkage between the
memory of the agent and the memory of the collective. For example, in the foraging
behaviour of ants, if too few ants are sent out to forage for food, the pheromone trail
evaporates more quickly than the reinforcement provided by other ants. In this case, the

food source may never be effectively exploited.

3.3.6 Agent Diversity
The examples in section 2.3.2, 2.3.3, and 2.3.4 demonstrate the value of diversity of

agent action in problem solving. In the behaviours described in these sections, diversity is
achieved by action selection processes that use weighted probabilistic mechanisms.
Mathematically, this is equivalent to a population of agents with fixed behaviours where
the proportion of agents of each type is described by the aforementioned weighted
probabilistic mechanisms. Diversity is valuable in order to allow for a problem space to be
searched using many distinct strategies. Also, the effectiveness of a population of agents
with high diversity will generally be greater in dynamic environments as no single
strategy is optimal in all environments [Wolpert 99]. In other words, any single agent can

model and manipulate only a small portion of the overall environment, and a population of

1. Ifthe number of agents equals or exceeds the number of items to be sorted it is probable that all will be picked up and
never sorted.

100

Biologically inspired Architectures for Mobile Agents

identical agents will do no better, since they will only be able to cover the same subset of
the environment’s state. A population of diverse agents will cover more of the

environment’s state and thereby provide better performance.

In sections 2.3.4 and 2.3.5, diversity of agent behaviour is achieved by constraints on
agent attributes. In section 2.3.4, wolves “repel” each other such that they are separated
Jjust enough to surround their prey without the gaps between them being so large that their
prey may slip through it. In section 2.3.5, birds “repel” each other such that they will be
able to sense changes in direction and velocity of a small number of birds nearby without
crashing into any of them. In some sense, the birds in a flock “attract” each other too;
individual birds attempting to match direction and velocity vectors with the centre of the
small number of birds close by. It is balance of attractive and repulsive influences that

maintains the flock as a whole. The probabilistic choice of action generates diversity.

3.3.7 Environmental Potential Fields
In section 3.3.4 we argued the need for agent mobility in distributed, decentralized

systems with limited agent sensory scope. Indeed, in the examples cited in sections 2.3.2
to 2.3.5, the agents all exhibit mobility. In fact, the vast majority of species within the
animal kingdom exhibit the characteristic of locomotion and even plants use phototropic
and geotropic mechanisms during growth. The question arises, “What drives the migration

decision process?”

The answer to this question is to observe the existence of attractive and repulsive fields

within the environment. In the example of ant foraging, gradients of pheromones exist

101

Biologically inspired Architectures for Mobile Agents

within the environment. In the example of ant sorting, similarity gradients exist in terms of
the objects sensed by the ant. Using the examples of the previous section, wolves and
birds perceive repulsive fields defined by the proximity of other wolves or birds
respectively. An important observation is that the potential fields are created and
maintained by the agents themselves. In the case of ant foraging, ants lay pheromones
when returning to the nest. In flocking, wolves or birds moving closer together cause an

increase in the local repulsive field.

While the fields themselves are important, their maintenance by agents within the
system is equally important from the point of view of self-organization of multi-agent
systems. As the examples presented have shown, natural agent-based systems organize
themselves with striking efficiency. The Second Law of Thermodynamics tells us that
closed systems become progressively more disorganized over time. It is not obvious,
therefore, that a large collection of agents will organize itself to do useful work or solve

complex problems.

While the addition of energy to the system is necessary to avoid the consequences of the
Second Law, it is not enough to ensure emergent behaviour. Rather, agents within natural
systems can organize themselves at the macro (global) level because their actions are
coupled to a dissipative or disorganizing force at the micro (local) level. The system
reduces entropy as seen at the macro level by generating more than sufficient entropy at
the micro level to ensure that the Second Law is not violated. In other words, entropy

leaks from the macro level (which is where problem solving activities are performed and

102

Biologically inspired Architectures for Mobile Agents

emergent behaviour is observed) to the micro level (where stochastic behaviour is the

norm and not affected).

This leakage effect generates a flow field that the agents can perceive and reinforce
[Kugler 87]. Perception of the field allows migration decisions to be made. Insect colonies
deposit pheromones whose molecules, spreading through the environment by diffusion,
generate, and subsequent leak, entropy. This diffusion process generates a flow field that
the insects can perceive and to which they can orient themselves in making further
pheromone deposits. The interplay of entropy, flow fields and macro and micro
behaviours is shown in Figure 23. In emergent systems there are three fundamental
processes: micro dissipation, macro perception of the micro flow field, and macro

reinforcement of the micro dissipative field.

Dissipation of the signal field may also fall within the responsibilities of the agents. For

example, the movement of currency in a market economy is from purchasers to sellers.

Organized Agent

Macro Behaviour

Perception

Rational Action
(Entropy Decrease)

. “Signal Field” .| Flow
Micro Dissipation Field
Dissipation
(Entropy Increase)

Force Flow

FIGURE 23. Macro Organization through Micro Dissipation

103

Biologically inspired Architectures for Mobile Agents

Entrepreneurs see the resulting the flow field — or rather its fluctuations — and orient
themselves to it, resulting in the emergence of structures such as local economies, markets

and supply chains.

To summarize then, agent communities should implement mechanisms with the

following three characteristics in order to have the potential for self organization:

e A signal must flow either among agents or through the environment, thereby setting up
a gradient field.

e The agents must be able to perceive the field and orient themselves to it.
e The agents’ actions must reinforce the field, providing positive feedback.

Market oriented programming [Clearwater 96] exploits these principles using currency
as the dissipative signal field. [Drogoul 95] exploits similiar dissipative principles using

simple agents to play a game of chess.

3.4 Introduction to Architectural Specification

As we have seen in the previous chapter, Nature provides us with several examples of
social systems comprising individuals exhibiting simple behaviors while the society

exhibits complex problem solving capabilities.

Naturally occurring social systems provide considerable inspiration for artificial systems
that display emergent behavior and this chapter has discussed the important attributes of
such systems and their environments. Systems exhibiting emergent behaviour promise to
provide guiding principles for, and engineering solutions to, distributed systems
management problems found, for example, in communications networks.

This chapter continues with a presentation of our multi-swarm architecture and how it

104

Biologically inspired Architectures for Mobile Agents

fulfills the requirements for emergence analyzed earlier. Following a presentation of the
architecture, we describe a scenario drawn from the communications domain where a
multi-swarm architecture has been used. Implementation issues, both by simulation and
through the use of a mobile agent toolkit, are then briefly described. The scenario

presented is analyzed in the following two chapters.

3.5 Agent System Architecture

In our system, ant-like agents solve problems by moving over the nodes and links in a
network and interacting with chemical messages deposited in that network. Chemical
messages have two attributes, a label and a concentration. These messages are the only
medium of communication used both between swarms and individual swarm agents. Data

and chemicals are considered synonymous in our system.

Agents in our multi-swarm system are of limited intelligence; i.e., they belong to the
Tightweight’ category of agents, and are capable of only simple behaviors. Such agents are
reactive in nature and have the ability to sense and modify their environment locally. Our
agents stand in stark contrast to agents supporting the Belief-Desire-Intention (BDI)
model [Shoham 93]. However, we freely acknowledge the desirable nature of hybrid
reactive-reflective architectures such as the Touring Machine architecture [Ferguson 95]
and, in fact, our lightweight agents interact with stationary agents on platforms used for
management and planning in our networks. Having the capability for mobility, ant-like
agents are poteatially able to modify local environments on network elements (or

components) in the entire network that they inhabit. Agents communicate locally, when

105

Biologically inspired Architectures for Mobile Agents

co-resident on a node and only through their local chemical environment.

Agents in our system can be described by the tuple, A=(E,R,C.MDFm). They have a

uniform architecture consisting of five components:

o emitters (E),

e receptors (R),

e chemistry (C),

e a migration decision function (MDF),

e memory (m)

Analyzing the above components, we can see that SynthECA agents may be thought of
as cells, cells which migrate through a network performing their individual, specialized
functions through interactions with other cells. Cells of the same type may be thought of
as swarms and emergent behaviour arising in two ways: through the collective dynamics
of a swarm and through the aggregate behaviour of swarm collectives. The idea of a cell is
appealing because of the cell membrane and associated cellular structures. The cell
membrane facilitates the movement of particular chemicals from inside the cell to its
surrounding environment. We would tend to view our agents as prokaryote cells -- rather
like bacteria -- having a simple structure with no nucleus. However, the membrane bound
organelles of the eukaryote cell -- shown in Figure 24 -- could be thought of representing
the chemistry in our agent architecture. Once again we see the influence of the Chemical

Abstract Machine -- the airlock mechanism providing similiar functionality to that of a

106

Biologically inspired Architectures for Mobile Agents

A Eukaryote Cell

FIGURE 24. Examples of Cell Types

cell membrane and the membrane-bound organelles representing the multiset transform.

The metaphor of a chemical reaction plus that of a prokaryote cell along with import of
reactants and export of products provides for the layered architecture of SynthECA agents
that is shown in Figure 25. In it, we see the interaction of swarms of agents generating and
processing chemicals that are used as excitatory and inhibitory signals to swarm levels
above and below it. This figure has a considerable number of architectural similarities
when compared to that of the Subsumption architecture shown in Figure 5 on page 25 and
Figure 6 on page 28. Swarms become competence modules and linkages between them
are replaced by activating or deactivating signals represented by concentrations of specific

chemicals. We will return to the concept of layering later in the chapter.

107

Biologically inspired Architectures for Mobile Agents

FIGURE 25. Layered Architecture for SynthECA Agents

3.5.1 Chemicals and the Chemical Universe
Central to the architecture is the concept of a chemical. The chemical concept is used in

order to provide communication between agents and to create dissipative fields within the
environment. The chemical concept is used to provide communication with and sensing of
the environment and provides the driving force for agent mobility. A chemical consists of
two components, an encoding and a concentration. The encoding can be thought as the

description of the chemical, in the same way that C,HsOH is the internationally

recognized description for ethanol.

Essentially, the chemical encoding is a data structure, G(Al), defined on some alphabet,
Al as a production of some grammar, G. A data structure consists of one or more locations,

with connections between them. The alphabet describes the contents of each and every

108

Biologically inspired Architectures for Mobile Agents

location within the data structure. For example, a chemical could be defined by an array of
size N with an alphabet given by the set, {1, O, #}. In this case, each element of the array
would be either I, 0 or #. Another example might be a n-ary tree, T, with the alphabet, {1,

0, #, *,}, where each node in the tree contains one of the alphabet set.

Chemicals participate in reactions and support generalized pattern matching, defined by
matching rules. Considering the n-ary tree example of the previous paragraph, the #
symbol matches the contents of a single location and the *, symbol matches a subtree. The
subscript here allows for matching and subsequent reuse elsewhere in a chemical reaction;
e.g., taking part of a reactant and having it appear within a product of the reaction. We will
return to this point in Section 3.5.4 on page 114, the section dealing with the chemistry of

an agent.
More formally, the following definitions apply.

Chemistry: The chemistry (or chemical universe) associated with SynthECA is defined
by the tuple Cu = <Al, G, Map>, where Al is the alphabet for the chemistry, G the
grammar used to generate chemicals or productions, and Map the mapping rules for the

alphabet.

Alphabet: The alphabet, Al, is a set of symbols associated with a chemical universe.
This set defines the contents of each and every location within the chemical structures that
can be generated using G. The set consists of two classes of symbols. Grounded symbols
have the property that they only match themselves and no other symbol in the alphabet.
Stated mathematically, g is a grounded symbol if

109

Biologically inspired Architectures for Mobile Agents

{bm(g)=b,ge Al,be Al} = {g} , where m(g) is the mapping function
applied to g. Unifier symbols have the property that they match other members of the
alphabet set. Stated formally, the symbol u is a unifier if,

{bm(u)=b,uec Al,be Al} —{u}# .They may or may not match with
themselves. Simple unifiers match a subset of the alphabet set only excluding themselves.

General unifier symbols match a subset of the alphabet, including themselves.

Chemical: We define a chemical as Ch(Enc,Re), where Ch(Enc,Re) represents a
chemical with an encoding Enc and a concentration Re represented by a positive, real

number. The encoding Enc is given by G(Al), a production of the grammar, G, defined for

the alphabet Al

Grounded Chemical: A Grounded Chemical, Ch(Encg,Re), is one whose encoding
contains only grounded members of the alphabet. Stated another way, grounded chemicals

may only be mapped to themselves within the chemical set by application of the mapping

rules. If § = {Ch(Enc, Re):MR (Enc) = Encg} , then the cardinality of the set S
is 1. Chemicals that do not possess the grounded property are referred to as unground.

Mapping rules: The mapping rules for a chemical universe consist of two elements, the
encoding mapping rules, MR,, and the concentration mapping rule, MR.. The encoding
mapping rules define equivalence relations between sets of productions that are
considered the same. The concentration mapping rule defines how the concentrations of

chemicals, Ch(Enc,R) are computed given the concentrations of the grounded chemicals

110

Biologically inspired Architectures for Mobile Agents

produced by application of the encoding mapping rules. If

S'g = {Ch(Encg, Reg):MRe(E) = Encg: for some encoding Enc, then Re is given
by Re = MR C(S g)' Trivially, Ch(Enc, Re) = Ch(Enc,, Re) if Enc is grounded,

regardless of the mapping rule used!. This result arises directly from the cardinality of the
set S being 1. It should be noted that a closed chemical world is assumed, an environment
that does not contain a specific grounded encoding effectively describes the situation
Ch(Encg, 0). The concentration mapping rules defined are: min, max, avg, plus. These
rules return the minimum, maximum, average and sum of concentrations of chemicals in

S, respectively.
Expressiveness: The expressiveness of a chemical is the cardinality of the set S,.

Binary Alphabet: The Binary Alphabet defines Al = {1, 0, #} with the mapping rule
{b:m(#)=b,uec Al,be Al} = {1,0} , and the symbols 1 and O being
grounded. This encoding has been inspired by those typically used in Genetic Algorithms

[Goldberg 89] and Classifier Systems [Holland 86].

Important Chemical Universes: We are interested in two chemical universes in this
thesis. First we define the Binary Array Chemistry of order N, BAC(N), and second we

define the Binary Tree Chemistry of size N, BTC(N).

Binary Array Chemistry of order N: BAC(N) uses the Binary Alphabet. The grammar

1. Pathological functions for MR, could be defined such that this does not hold, hence the restricted set provided.

111

Biologically inspired Architectures for Mobile Agents

for chemical productions uses an array of size N and selects a member of the alphabet for
each position in the array. The encoding mapping rules are simply the application of the

alphabet mapping rule to all positions in the array. The concentration mapping rule is plus.

Binary Tree Chemistry of order N: BTC(N) uses the Binary Alphabet. The grammar
for chemical productions creates a node with two children, selecting a member of the
alphabet for the contents of the node and recursively applying the grammar to the children
until N nodes have been generated. The encoding mapping rules are simply the application
of the alphabet mapping rule to all positions in the tree. The concentration mapping rule is

plus.

Properties: These two chemical universes have a number of interesting properties. First,
they are both closed. A closed universe is one in which the set of all possible chemicals

has finite cardinality. An open chemistry is one with an infinite cardinality. Second, the

n

2
cardinality of BAC(n) is 3" while the cardinality of BTC(n) is (n). The relative
n

+ 1
expressiveness of chemicals within these two chemistries is quite different. In both

BAC(n) and BTC(n), the expressiveness of a chemical is 2™, where m is the number of #
symbols in the data structure. However, even though the absolute expressiveness of the

two chemistries is identical, the relative expressiveness of the two chemistries when

. 2n
measured as a fraction of their universe size is (n + 1)/ .
n
Open chemistries are also of interest but go beyond the scope of this thesis. An open

112

Biologicaily inspired Architectures for Mobile Agents

chemistry allows for the generation of complex structures from simple building blocks.

We will comment on the utility of open chemistries in the final chapter.

3.5.2 Emitters
The emitters associated with an agent are used to generate chemicals that are deposited

where the agent is currently located. Using ants and their foraging behavior as an example,
pheromones are laid down as the ant returns from searching for a source of food. Emitters
have an associated Emitter Decision Function (EDF) which is used to decide the rate of
production of an emitted chemical. The emitted chemical is digitally encoded, having an
associated pattern that uses the Chemistry associated with the agent; e.g., the Binary
Chemistry. The hash symbol in the alphabet allows for matching of both one and zero and
is, therefore, the "don’t care"” symbol. A chemical encoding including one or more "don't
care" symbols can be thought of as a generalized chemical or an instance of several classes

of chemical.

The function of an emitter is to alter the local environment inhabited by the agent. Using
the above alphabet it is possible, for example, for an agent to generate a digital chemical
with the encoding 1#01 which will be sensed by an agent (as we shall see in the next

section) with a 1101 receptor and by an agent with a 1001 receptor.

An emitter can be either on or off depending upon its internal state; i.e., the

concentrations of chemicals stored within agent memory.

3.5.3 Receptors
The receptors associated with an agent are used to sense chemicals that are present in the

113

Biologically inspired Architectures for Mobile= Agents

agent’s local environment and chemical changes that occur in it. Using, once again, ants
and their foraging behavior as an example, pheromones are sensed by the ant as it searches
for a source of food. Receptors haves an associated Receptor Decision Function (RDF) that
is used to determine the sensitivity to the chemical in question and it is possible to
associate actions with a receptor. The sensed chemical is digitally encoded, once again
having an associated pattern that us.es the agent Chemistry; e.g., the Binary Chemistry. It
is possible, therefore, to engineer w-ide spectrum sensors that detect many chemicals. For
example, a receptor engineered to sense the encoding 10## will be able to detect the
chemicals having the 1000, 1001, 1010 or 1011 encoding. Like an emitter, a receptor can

be either on or off depending upon i1s internal state.

3.5.4 Chemistry
The chemistry associated with an agent is the set of chemical reactions that can occur

within the agent. While the reactiom set is limited to, at most, two reactants or products,
larger reactions can be synthesized! by building chains of these five types of reaction.
Reactions are read from left to right. This is important when applying the mapping rules
associated with a chemical universe as will be demonstrated in an example later in this

section. There are five types of reac tion that can occur within an agent. These are shown

on the next page.

114

Biologically inspired Architectures for Mobile Agents

X —’nothing ~ 1)
X+Y->Y (2)
X+Y>Z 3)
X+Y->X+Z @
X+Y>W+Z (5

Reaction Types

The first reaction can be thought of as evaporation of a chemical. An example of such a
reaction would be the evaporation of pheromone from an ant trail. The second type of
reaction is the catalytic breakdown of a chemical, with Y representing the catalyst. An
example of such a reaction might be a parasitic interaction between two types of agent
such as could be observed when one ant is trying to throw another ‘off the scent’ when
competing for finding a path to a given food source. Another example, this time from the
telecommunications domain, is the scenario where an agent representing higher priority
traffic reduces the concentrations of lower priority traffic’s pheromones (that are used to
mark a given route) in order to have the lower priority traffic find an alternate route. The
third reaction type represents the fusion of two chemicals and it is this type of reaction that
we envisage being used to communicate information from one layer of a multi-swarm
hierarchy to another. This type of reaction provides a mechanism which multi-swarm
systems could use to implement Subsumption Architectures [Brooks 86], [Brooks 91].

This is shown diagrammatically in Figure 26.

Figure 26 shows two connection monitoring agents that have quality of service
monitoring for a specific connection as their primary responsibility. They detect

decreasing quality of service for a shared network resource on, say, a link. As a result, they

115

Biologically inspired Architectures for Mobile Agents

Diagnostic Agent

Z

Connection Monitoring Agent A Connection Monitoring Agent B

Monitoring agents A and B lay down increasing quantities of pheromone
with decreasing quality of service on a given link. Diagnostic agent
senses increasing levels and initiates diagnostic activity when threshold
exceeded.

FIGURE 26. Type 3 Reaction Example

lay down quantities of X and Y that indicate an increasing level of dissatisfaction with the
quality of the connection. A diagnostic agent encoding a type three reaction has one or

more receptors that allow for the detection of X and Y, allowing for the generation of Z.

The fourth reaction type represents a catalytic reaction where one chemical is converted
to another but only in the presence of a mediating chemical, the catalyst. This type of
reaction can be thought of, in computational terms, as providing a conditional construct
where, only if we have a certain confidence in a given state can we perform a specific
transformation of one chemical to another. The fifth reaction type is the most general in
that the two reactants are converted to two products that are distinct from the reactants.
Depending on whether a given chemical is part of one swarm layer or the swarm layer
above it, the five types of chemical reaction can be considered as providing both inhibitory
and excitatory stimuli to the upper swarm layer. For example, Figure 26 can be viewed as

providing an excitatory stimulus to the fault detection swarm layer considered being

116

Biologically inspired Architectures for Mobile Agents

above the connection-monitoring layer within our multi-swarm architecture.

All of the reactions use digitally encoded chemicals, i.e. all chemicals use the {1, O, #}

alphabet. Hence, reactions of the form below are supportedl.

OI1+1#0 - 1#0

The above reaction, an example of a type two reaction, allows for the catalytic
breakdown of the 011 chemical to occur via either of two catalysts, namely 110 or 100.
Unification occurs between chemicals on a bit-by-bit basis and is carried through from
reactants to products, i.e., the "don’t care" symbol in a given position within two reactants
or between reactants and products can be either 1 or O in a single reaction. Using the above

reaction as an example, four possibilities exist. These are shown below:.

0l1+110—>110
011+100 — 100
0I1+110 — 100
011+100 — 110

The first two reactions are implied, with the "don’t care" symbol being unified to | and O

respectively. However, the latter two reactions are not implied, as in both reactions the

"don’t care" symbol in the second position has to unify to both 1 and 0.

All of the reaction types have an associated reaction rate, i.e. a measure that determines
the speed with which the reaction can occur. Reaction rates are temperature dependent,
with the dependence characterized by Arrhenius’ equation, shown on the next page, where

k is the rate coefficient, A is a constant, E, is the activation energy, R is the universal gas

L. Note that the concentrations of the two chemicals have been assumed to be one in this example.

117

Biologically inspired Architectures for Mobile Agents

constant, and T is the temperature (in degrees Kelvin).

k = Aexp(-E,/(RT))

Temperature and energy are considered to be essentially the same in our system.
Consequently, a unique chemical encoding that can be generated by chemical reactions (as
any other) has been chosen to represent temperature. By using the same representation for
energy and chemicals, endothermic and exothermic reactions can be used to cool and heat
the system respectively. Endothermic reactions are characterized by a decrease in
temperature and, as such, reaction types 2, 3, 4 and 5 on page 115 can represent this type
of reaction. This is shown in the example reactions below, where T is meant to represent

the energy consumed by the reaction, i.e. it appears on the left-hand side of the reaction.

Similarly, reaction types 3, 4 and 5 as is shown in the example reactions above may
represent exothermic reactions. In these reactions T once again represents the energy

generated by the reaction, i.e. it appears on the right-hand side of the equation.

T+Y—>Y X4Y T
T+Y—>Z X+Y X +T
X+T—->X+Z XV WT
X+T—->W+Z

Endothermic Exothermic

Changing the local temperature of the system changes the degree to which swarms
interact. Low temperatures see little interaction between swarms whereas high
temperatures see high levels of interaction. It should be stressed that temperature is a local

characteristic of the environment and no attempt is made to make this information

118

Biologically inspired Architectures for Mobile Agents

globally available. The temperature chemical can be thought of as a local control
parameter limiting or promoting agent interaction, i.e. providing inhibitory or excitatory

stimuli within the multi-agent system.

In our system, all agents are provided with a temperature receptor by default, thereby
being able to sense the local temperature. However, this need not be the case, one could

imagine a design where internal and external agent temperatures were maintained.

3.5.5 Memory
The memory associated with an agent stores the chemicals and their concentrations that

are held internally to the agent. It is the holder of the state of the agent. Symbolic
information can also be stored in memory; however, the agent alone may use this type of
information. These types of agent cannot communicate such information to the
environment. Only chemicals for which emitters or receptors are not provided are stored

within agent memory.

3.5.6 Migration Decision Function
The Migration Decision Function (MDF) is a function or rule set that is used to

determine where an agent should visit next. The MDF typically uses chemical and link
cost information in order to determine the next hop in its journey through the network or
may simply follow a hard-coded route through the network. This latter migration strategy
is often referred to as an itinerary in the mobile agent literature. Alternatively, when
migrating, the agent may use the default migration node available to it. An important

consideration in designing an MDF is that it should take advantage of gradients in

119

Biologically inspired Architectures for Mobile Agents

chemicals that are present in the network. In doing so, agents may take advantage of the
actions of other agents. Particular agents may want to move up a gradient (attraction) or
down a gradient (repulsion). The MDF may take advantage of the pattern matching
properties of the language used for the chemistry of the system. For example, consider the
Binary Alphabet introduced earlier and used as part of a Binary Chemistry of order 2. We

might include a term in the MDF consisting of the chemical 1#.

Consider a scenario where an agent has the choice of two links. Link 1 has
concentrations Ch(10, 0.1) and Ch(11, 0.7). Link 2 has concentrations Ch(10, 0.5) and
Ch(11, 0.6). Thus, an agent moving up a gradient indicated by the 1# pattern would
follow link 2 because Ch(1#, 1.1) is sensed for that link. Similarly, an agent moving up the

gradient indicated by the 11 pattern would follow link 1.

3.5.7 Agent Action Primitives

Agent action primitives are invoked during evaluation of the receptor and emitter
decision functions. The focus of the architecture proposed by this thesis is self emergence.
As such, the principles and mechanisms needed to support it are described. Moreover, the
agent action primitives will, by and large, be domain specific and, therefore, should not be

part of a high level specification such as provided here.

However, a number of important generic primitives are provided. First, a migrate
primitive is provided and causes the migration decision function associated with the agent
to be evaluated in the current environment resulting in a decision to move to an adjacent

node. Second, a clone primitive is provided. This creates a duplicate of the agent invoking

120

Biologically inspired Architectures for Mobile Agents

the primitive, giving the child agent an independent thread of control. Finally, a diffuse

primitive is provided. This primitive allows a proportion of a chemical to be removed

from the current environment and divided equally among the environments of all adjacent

nodes.

3.5.8 Observations of the SynthECA Architecture

The cellular figure to the left is taken
from Maturana and Varela and is used by
them to introduce autopoietic concepts.
The essence of this figure is autopoiesis
and the relationships within a cell that
make self creation possible. The reader
cannot fail but to notice the striking
similarities between it and the agent
architecture described in section 3.5. The
cell chemistry, reaction pathways and

chemical exchange with the cell

FIGURE 27. A Cellular Autopoietic Network environment are all present.

Section 3.3 on page 95 put forward a number of desirable characteristics for an agent

architecture such that collections of appropriate agents might possess the property of self

organization. In this section we argue as to how the architecture described in this chapter

provides these characteristics.

121

Biologically inspired Architectures for Mobile Agents

Agent Size: In SynthECA, it is intended that agents are reactive, i.e., they do not contain
planning, execution and scheduling components as described in Section 2.2.1 on page 22
and shown in Figure 4 on page 24. Knowledge in a SynthECA agent is represented in two
ways: in the chemistry of the agent and in the receptor and effector decision functions.
Given the small number of chemical reactions, receptors and effectors, the expertise of a

SynthECA agent is considerably smaller than a BDI agent.

Agent interaction: Effective communication is provided through the exploitation of the
chemical metaphor. Chemical reactions ensure that the architecture is not biased towards
any serial processing; all reactions occurring in parallel. The chemical metaphor also
provides for effective coupling of agent and environment as it is explicitly represented in
agents’ chemical reactions and the pattern matching properties associated with chemicals.
Effective interaction is supported by encapsulation, the agents’ effectors and receptors

providing this.

Agent Aggregation: Aggregation is supported by layering. Layering is facilitated by the
use of a single form of communication -- the chemical. All interfaces between layers are
defined in terms of chemical signals; the receptor and effector mechanisms providing the
airlock mechanism described in CHAM. Encapsulation of this form ensures
straightforward replacement of one agent type within another, as demonstrated in Figure
28. The encapsulation argument may be extended across multiple layers in a
straightforward way. Aggregation as implied by Subsumption is supported through the

alphabet used to describe chemicals. By allowing pattern matching, we facilitate the

122

Biologically inspired Architectures for Mobile Agents

integration of a wide range of signals from lower level agents by a higher level swarm.
Similarly, if a chemical, C, means the same thing to a number of lower level agents, i.e.,
they have a partial ontology in common, integrating C into the higher level agent allows it

to subsume the lower level behaviours.

Describing this functionally, and with a concrete example, we could think of a layer in
which agents perform routing functions, and static agents monitoring the quality of service
of the connections which these routing agents create. A layer above this would contain
agents responsible for fault location. These agents would sense quality of service changes
as deposited by the connection monitoring agents, locate and fix faults in the network, and
deposit “fault indicating” chemicals in the environment. These same fault indicators,
along with routing chemicals are used by the routing agents in order to bias routes away
from unreliable components. Finally, network planning agents would sense fault
indicating and congestion indicating chemicals in order to initial partial re-planning of the
network. In essence, we have three layers: control, management and planning. This will be

demonstrated in the next three chapters and is the essence of Figure 25 on page 108.

Agent Scope: The scope of an agent is the portion of the environment that it can sense.
Limited, or local, scope is supported directly; agents may only sense their immediate
environment and act locally. Agent scope includes nearest neighbour nodes in a graph.

This is necessary in order to sense gradients in the local environment.

Agent Memory: Memory contents are constrained to be symbols of internal interest and

chemicals that are not communicated to the local environment. Acting and sensing locally

123

Biologically inspired Architectures for Mobile Agents

tends to devalue the long term storage of sensory input from previous environmental

interactions.

Agent Swarms: The architecture supports the concept of a swarm by allowing for
multiple autonomous agents with the same receptor and effector apparatus that enables
agent actions (placing concentrations of particular chemicals in the environment) to affect

the behaviour of other swarm agents; positive reinforcement is supported.

Agent Diversity: Restricting the discussion purely to the communication mechanisms
described by this agent architecture, diversity is easily supported within a swarm and
between swarms. For example, an MDF with a probabilistic component to it as shown in

equation 6, where p;; represents the probability of moving from node i to node j, S; is the

concentration of a specific chemical, s, on the j[h node as sensed by the agent, C;; is the

A Increasing abstraction

o

/V

/
X+A = Y+A

Replaced by...

A Increasing abstraction

ad

/
R+B > Y+B

X/' X+A = R+A

FIGURE 28. Aggregation facilitated by chemical interaction

124

Biologically inspired Architectures for Mobile Agents

cost of the link from node i to node j, and a and b are constants, obviously supports

—-a, b
..oc §. .. 6
Pij SJ CZJ (6)

diversity through non-determinism similiar to Resnick’s Randomness Principle. If a
swarm of agents were to be constructed with this form of MDF, the swarm would exhibit
diverse behaviour as a consequence of individual agents executing a biased random walk

within the network.

Inter-swarm diversity is achieved through a number of mechanisms, although they are
all derived from basic sensory differences. First, using different effectors and receptors
causes varying perception of the same environment. Second, the points of interaction
between swarms can cause diverse behaviour as a result of one agent affecting another.

This is best demonstrated with an example.

Imagine two agent types representing servers. Both agent types sense a common

chemical, C,. Now consider the migration decision functions for the two agent types.
These MDFs are deterministic and state, “If the concentration of Cg exceeds t(C;), then
migrate to a random neighbour.” Let the rate of production of C be 1 per unit time for the
first agent, 0.5 for the second and t(C) to be just less than 1.5. Finally, we assume the
complete evaporation of Cg between time steps. With this scenario, the two agent types

that end up on the same node at the same moment in time will spontaneously migrate to
random nodes whereas two agents of the second type may coexist owing to the different

threshold values. Hence diversity of behaviour between swarms.

125

Biologically inspired Architectures for Mobile Agents

Environmental Potential Fields: One of the most important observations made in this
chapter is that of the need for potential fields within the environment and the ability for
agents to sense them and orient themselves to those fields. SynthECA contains potential
fields defined through the connectivity of the network; i.e., the local neighbourhood is
defined, and the laying down of concentrations of particular chemicals on the nodes in that
network. Differing concentrations of particular chemicals between nodes then define
gradients within the network. The potential fields can be either attractive or repulsive, this
being determined by the agent through its migration decision function. For example,
consider the MDF shown in equation 6. The field as defined by the concentration of
chemical s such that S; > 1 can be considered attractive in the sense that the agent moves
towards nodes of high concentration of s if a < 0, and repulsive in the sense that the agent
moves away from nodes of high concentration of s if a > 0. If a is zero, the agent is
indifferent to the field. An agents’ perception of the potential fields within a network may
also be complex as a result of the pattern matching capabilities of the language chosen for
chemical expression. Consider, for example, the alphabet {1, O, #} and two chemicals 10
and 11. Now consider two nodes, the first with concentrations 0.5 and 1.0 and the second
with 1.0 and 0.5 for chemicals 10 and 11 respectively. Obviously there are gradients for
both chemicals between the two nodes. However, consider an agent that has an MDF that
is defined by equation 7. The index of the node chosen for migration, i, at some time, t, is

i(p) = maxj(Yj(t)) @)

determined by the node with the maximum concentration of the chemical Yj(t), in this

126

Biologically inspired Architectures for Mobile Agents

example represented by the encoding 1#. Looking at the concentrations for the two base
chemicals (10 and 11), we see that there is no gradient as Y for both potential destination

nodes is 1.5 (=1.0+0.5).

Self organizing criticality: Chemical systems such as those described in [Eigen 79]
exhibit the kind of insensitivity to initial conditions that characterize self organizing
critical systems [Bak 96]. While no convergence or stability proofs are included in this
thesis, the wide body of literature on the analysis of chemical systems, it should be

possible to exploit it in the analysis of systems based upon this architecture.

3.5.9 Agent Operation

While the chemistry of an agent appears similar to a classifier system at first glance, it is
only superficially so. Firstly, the agent chemistry is fixed and no Bucket Brigade
algorithm ([Goldberg 89], for example) or similar apportionment of credit scheme is
intended to operate in order to modify the chemistry. An agent’s chemistry is fixed, having
been engineered in order to achieve a given function within the mobile agent subsumption
architecture. Secondly, an agent operates continuously and all reactions operate in parallel
in order to modify the local environment. This is quite different from the way in which
message processing occurs within a classifier system. Upon arrival at the node, an agent
registers interests in particular chemicals. Chemical concentration changes caused by
agent chemical reactions are communicated to the local environment for which the agent
has emitters. These concentration changes are then automatically communicated to other

agents resident at the node as a result of their registration for notification of chemical

127

Biologically inspired Architectures for Mobile Agents

concentration changes. Once the agent has performed its task on a particular node; e.g.,
measurement of quality of service of a connection or simply sensing the concentration of a
specific chemical, the MDF is invoked in order to determine the node to migrate to in the
network. No fixed residency time is assumed; some agents will remain at a node for long

periods of time, others will not.

3.5.10 Agent Design
Section 2.2.4 on page 33 in the previous chapter described the Mobile Code Toolkit

developed here at Carleton University within the Perpetuum Mobile Procura group. It is a
natural candidate as a framework for design and implementation of the agent architecture
described earlier. The principal Java data structures introduced in support of this design

are described in Appendix B.

In this section we describe the main elements of the design and how the agent-
environment coupling works. Figure 29 shows the interactions of the main elements of the
design. This figure does not include short and long term memory for reasons of clarity.
However, it should be understood that all elements of the architecture interact with these
elements. Short term memory stores those chemicals that are shared between the local
environment and the agent; i.e., cross the boundary using Emitters. Long term memory
stores those chemicals that are considered internal to the agent and other information
which is considered essential to the operation of the agent. The boundary of the agent
shown in Figure 29 logically represents the cell membrane; in terms of implementation

this is provided by the encapsulation mechanism present in the Java programming

128

Biologically inspired Architectures for Mobile Agents

language. The Emitter and Receptor blocks shewn crossing the cell membrane in Figure
29 represent the coupling to the environment which is implemented as a shared
communication medium — a tuple space. The Receptors are implemented using the
Observer Pattern, and are observers of the Environment. The Emitters are also observers
of the Chemistry of the agent and are notified of changes in the concentrations of

chemicals that are to be communicated to the Environment.

The Receptor Decision Function (RDF) associated with a Receptor is invoked whenever
the Receptor is notified of a change in chemical concentration. The RDF may reason with
the absolute concentration value or the change since the last notification. The actions

associated with an RDF allow for the interaction with a Virtual Managed Component

FCDICON

Emitter; |—m

\
Emitter, [—»

Environment

—p= Receptor;

— | Receptor,
— Receptor;

Emitter; | g

FIGURE 29. Agent Architecture and Interactions

129

Biologically inspired Architectures for Mobile Agents

(VMC) resident of the component. The VMC provides access to the underlying
component’s resources as described in Section 2.2.4 on page 33. These interactions allow

for state changes on the network component.

The Chemistry processor provides access to and control of chemical reactions that are
active within the agent. One of the main functions of the Chemistry entity is the
calculation of changes to the concentrations of chemicals involved in reactions. In an
anaiogue world these changes would be monitored continuously; however, we
approximate this process digitally by having the Chemistry processor signal concentration
changes to registered Emitters after a processor clock tick. The Chemistry processor also
communicates chemical concentration changes to the Emitter, which, in turn,

communicates them to the Environment via the Environment Access Controller.

Once signalled with a chemical concentration change, an Emitter first communicates the
concentration change to the Environment. Upon completion, the Emitter then invokes its
associated Emitter Decision Function (EDF). The actions associated with an EDF may
cause interactions to occur with a resident VMC and analogous state changes to take place

as with an RDF.

Agents communicate with the Environment through an Environment Access Controller
(EAC), the EAC being implemented as a type of VMC. This mediation allows chemical
concentration changes to be aggregated over an Environment clock tick. The reason for
doing the aggregation is the same as for the Chemistry Processor. The VMC shown in

Figure 30 is intended to show that agents may also interact with traditional data sources,

130

Biologically inspired Architectures for Mobile Agents

Network Component

Environment Access
Controller

Environment

Legend.
JVM Java Virtual Machine
MCE Mobile Code Environment
vMC Virtual Managed Component
MCM Mobile Code Manager
CF Communication Facilitator
MF Migration Facilitator
SF Security Facilitator

FIGURE 30. Agent-Environment Coupling

such as Management Information Bases (MIBs).

The interactions between the Mobile Code Manager, agents, VMC and Environmental
Access Controller shown in Figure 30 indicate the central role played by the MCM in the

Mobile Code Environment. For example, the MCM is used as a local naming service for

131

Biologically inspired Architectures for Mobile Agents

finding the EAC and the network ccomponent VMC. The Environment of Figure 29 is
represented by the Environmental Access Controller shown in Figure 30, which, in tumn

manipulates the underlying Environment.

3.5.11 Agent Lifecycle
In this section we define the lifecycle of an agent from the point of view of arrival at a

node, interaction with the local enwironment and subsequent migration. A simplified
lifecycle for the agent is shown in Figure 31. The agent arrives at a node using the MCT
code transport mechanism. This registers the agent with the agent framework locally. The
callback onlnit() or onRestore() is then invoked in order to allow the agent to initialize or
to restore persistent state after migration respectively. The local Environmental Access
Controller (a virtual managed component) is then located by querying the Mobile Code
Manager and the agent registers its interest in changes of specific chemicals. These
activities are performed using a pool of worker threads defined within the Mobile Code
Framework. The callback onStart() is then invoked, this being the main control loop for
the agent in which reactive processing takes place. A separate thread processes this
method and two further agent threads are created (the Chemical Communication threads)
that handle communication between the agent and the local chemical environment. The
onStart() method creates the Chemical Processor which is responsible for the processing
of chemical reactions within the agent. When a chemical change occurs within the agent,
the agent’s onOutChange(Chemical) method is invoked using the output Chemical
Communication thread. The onOutChange(Chemical) method acts as a dispatcher,

mapping the Chemical received to the: appropriate Emitter Decision Function.

132

Biologically inspired Architectures for Mobile Agents

When a chemical change in the environment occurs that is of interest to the agent, the
agent’s onInChange(Chemical) method is invoked asynchronously. The processing of the
change occurs within the input Chemical Communication thread. This
onlnChange(Chemical) method acts as a dispatcher, mapping the Chemical received to the

appropriate Receptor Decision Function.

Once local processing is complete, the agent will choose to invoke the migrate primitive
from within either an Emitter Decision Function or a Receptor Decision Function. When
this occurs, the migrationDecisionFunction() method is invoked, and the next destination
computed. Once computed, the onMigration(Location) callback is invoked in order to

allow for local housekeeping to occur on the node. The agent is then migrated. If

Transport Agent »-| Performreactive | ! onlnChange(Chemical)
processing
' ! ;
onlnit() / onRestore() onMigrate(Location) | | onOutChange(Chemical)

v

Locate and register
with Environmental
Access Controller

l

onStart()

migrate

success? Deregister with

Environmental
Access Controller

'

— onFailMigrate(Location) onDestroy()

FIGURE 31. Agent Lifecycle

133

Biologically inspired Architectures for Mobile Agents

successful, the local copy of the agent deregisters with the Environment Access Controller
and the callback onDestroy() is invoked before all agent threads are destroyed and the
Mobile Code Manager removes all references to the agent. If migration fails, the agent’s
onFailMigrate(Location) callback is invoked and processing continues on the current

node.

3.6 SynthECA Scenario

As an example of a multi-swarm interacting system moving on a network using the
architecture described in this chapter we have chosen to investigate route finding,
maintenance and fault detection in a communications network. In our environment we
have a completely distributed view of the network. Such a view is highly desirable as it

makes management of these networks easier and scalable.

In our system, drawn from the domain of transmission networks, we are attempting to
create connections between nodes in the network, monitor them for quality of service
degradation and diagnose the location of faults when they occur. It is assumed, and this
can be the case, that a network manager does not exist and so no global view of the
network is maintained. Consequently, a distributed route finding solution as represented

by the Ant Search class of algorithms is a good candidate for route finding.

To date, three applications of the ant metaphor in the domain of routing have been
documented [White 98a] (used in this thesis), [Schoonderwoerd 97] and [Di Caro 97]. The
work reported in [Schoonderwoerd 97] embraces routing in the circuit switched networks

while [Di Caro 97] deals with packet switched networks. Both [Schoonderwoerd 97] and

134

Biologically inspired Architectures for Mobile Agents

[Di Caro 97] propose the control plane as the domain in which their systems would most
likely operate. Di Caro and Dorigo [Di Caro 97], in particular, provide compelling
experimental evidence, based upon simulation, as to the utility of AntNet in the network
routing problem domain by comparing ant-based routing with the current and proposed
routing schemes used in NSFNET. The scenario described here is somewhat different and
applies to a management context such as is found in a Synchronous Optical Network
(SONET) transmission network. A routing table is maintained in all of the aforementioned
work, a rather conventional and limiting view from the perspective of the ideas proposed

here.

For the context of this thesis, we are interested in forming a connection between a source
and one or more destinations for the purpose of creating a link in a logical network. It
should be noted that this path may be protected, i.e. two node and link diverse paths may
exist between a given source and destination. This (possibly protected) path, in turn, can

be used as a resource, a link, in the next logical layer.

3.6.1 Agent Classes
In our system we have three agent classes related to route finding, one class concerned

with connection monitoring and one class that has the function of detecting network poor
quality of service conditions. These will now be described in terms of the (E,R,C,MDF,m)

formalism introduced earlier in this chapter.

The three agent classes related to route finding are explorers, allocators and deallocators.

The function of an explorer agent is to find a path from a given source to a specific

135

Biologically inspired Architectures for Mobile Agents

destination. The metaphor used to describe the behavior of explorer agents is that of ants
foraging for food. Explorer ants possess a single emitter (e) and three receptors (ry, rp_ r3).
The emitter and receptor r; are both tuned to a single chemical or pheromone (T). The
receptor 1, is used to measure the costs of links in the network (C). The receptor r3 is used

to detect the perceived quality or reliability associated with links in the network (Q).

The explorer agent has two distinct modes of operation. When moving towards the
requested destination, the emitter is turned off and the receptors are used to detect the
connection-specific chemical and link costs respectively. The agent’s memory is used to
store the links traversed by the agent. When moving back towards the source node having
reached the required destination, the receptors are turned off and the emitter is turned on.
A single chemical reaction (c) is defined for the explorer agent. This reaction allows for
the generation of the pheromone used to reinforce an emerging path. The MDF used by
the agent is defined by a series of equations that specify the probability with which a given
link will be used for agent migration. Consider a swarm of explorer agents represented by

the set {k}. The probability with which an explorer agent (k) chooses a node j to move to

when currently at the i™ node at time t is given by:
=[S Ol -B) N
Pijk ®=[ijr(t)] (Gl [Rijk O /Ny
Na=Z; e (S 1% LCT PRy 01
ik=2j g(L(i)-Tabuy) Bijr il Rk
where oy, B and 7y are control constants and determine the sensitivity of the search to

136

Biologically inspired Architectures for Mobile Agents

pheromone concentration, link cost and component quality respectively. Ny, is simply a
normalization factor that allows pijk (t) to be interpreted as a probability. L(i) is the set of
integers, {n} such that there exists a link between the i and n'! nodes. Sijr(t) is the

quantity of pheromone, s, present on the link between the i and j‘h nodes for the r'f

th

chemical at time t. Cy; is the cost associated with the link between the i and j ' nodes.

|

Rijk (t) is the quality or reliability measure associated with the link and the jm node for the

K agent at time t. Tabuk is the set of links already traversed by the k' agent. The

expression (L(1) - Tabuk) represents the indices of the set of nodes not yet visited by the

k™ agent. The C function is meant to represent the cost to the user for consuming
bandwidth on a given link while the R function represents the confidence that we have in

the various components involved in the connection being able to transport data effectively.

When explorer agents return to the source node, a decision is taken as to whether a path
has emerged. Essentially, if a given percentage of the last n agents have followed a single
path then path emergence is considered to have occurred. Other algorithms were also
considered and these are presented in the next chapter. Once emerged, an allocator agent is
sent into the network in order to create the connection; i.e., allocate bandwidth and

associate a set of path elements with the route to be used.

The allocator agent has no emitters or receptors. It has a simple memory that stores the

route that has emerged. An allocator operates in two modes: forward and backward. The

137

Biologically inspired Architectures for Mobile Agents

allocator agent has a simple MDF that simply pops the first entry from the list of links
used in the route that is stored in memory. The agent allocates resources for the connection
at each node in forward mode. In backward mode the allocator performs no action at each

node.

A deallocator agent has an identical (E, R, C, MDF, m) description to that of an allocator
agent. The only difference between the two agent types is the action performed at each
node when in forward mode. A deallocator agent releases resources in forward mode in
contrast to the action performed by the allocator agent and is sent when confidence in the
existing route falls below a given threshold, the connection is no longer required or the

route is no longer viable. This might be due to component failure, for example.

Further details regarding the connection allocation algorithm, explorer, allocator and

deallocator agent behaviors will be provided in the next chapter.

Evaporator agents also circulate within the network. The function of these agents is to
evaporate chemical concentrations relating to connection finding. They are equipped with
a single receptor capable of sensing all connection-related chemicals. They implement a
type one reaction in order to effect chemical evaporation. Evaporator agents are required
in order to ensure that we do not "greedily" choose the first path found but allow a balance
of "exploration and exploitation" to occur in route finding. Evaporation agents are
examples of agents where the "dont care" symbol is used in the emitter/receptor
description. Evaporator agents have an MDF that allows them to cycle through all nodes

in the network in a periodic fashion. Static evaporator agents were also considered.

138

Biologically inspired Architectures for Mobile Agents

Explorer agents continue to search for better routes through the network even =after a
connection has been set up. Also, once set up, the end-to-end quality of service for the
connection is monitored from the source node. When significant changes in quality of
service are observed, a monitoring agent is sent out into the network in order to mod.ify the

Q values for the components used in the connection.

Monitoring agents have either one receptor (r;) or one emitter (e;). If the quality of
service of the connection has increased, the monitoring agent with a receptor is sent.. If the
quality of service of the connection has decreased, an agent with an emitter is semt. The
monitoring agent’s emitter generates the "quality of service" chemical, q, using a single
chemical reaction in situations where quality of service has decreased and evapsorates
existing concentrations of q chemical when quality of service has significantly impmoved.
The receptor senses the q chemical. The monitoring agent has a simple MDF that simply

pops the first entry from the list of links used in the route that is stored in memory.

The final agent type in the current system design is the fault location agent. Fault
location agents circulate through the network and monitor the q chemical concentrations

on nodes and links, denoted by Q;;(t) in the equation below. Fault location agents have a
single receptor (r;) and no emitters. They do not have an associated chemistry; i.e.., they

are merely observers of network state. The MDF associated with fault detection agents is

probabilistic in nature and is given by the equation:

pij(t) = Qij(t) [2 Qi (t) for £% of the time and random otherwise.

Random migrations are made for (100-f)% of the time in order to ensure that the wntire

139

Biologically inspired Architectures for Mobile Agents

network is reached in reasonable time. A probabilistic choice, based upon Q values, is
made for f% of the time in order to revisit parts of the network that are experiencing poor
quality of service. It should also be noted that oscillation between two high Q components
is explicitly prevented; i.e., a fault location agent cannot return to a previously visited
network element for t migrations. This list of tabu elements is stored in agent memory in a

similiar fashion to that of explorer agents.

The function of a fault location agent is to observe components with high Q values.
When the observed Q value exceeds a threshold value, the agent initiates diagnostic

activity by executing rules associated with ry.

3.7 Implementation

A Smalltalk simulation has been built for the scenario described in the previous section.
This simulation has been used to investigate the interaction of the many parameters that
characterize the system; e.g., reaction rates, number of agents, agent generation frequency
and several others. A brief description of the Simulation and its user interface can be

found in Appendix A.

3.7.1 Results and Discussion

The author’s research [White 98a], [White 98c] provides experimental evidence that the
basic system described can effectively compute routes and plan connections in a network.
While only simulated results are available, the system has demonstrated that routing
solutions to the point-to-point, point-to-multi-point and protected path problems (a

problem equivalent to the shortest cycle) for a variety of graph topologies can be

140

Biologically inspired Architectures for Mobile Agents

effectively computed. The results in [White 98a] indicate that 15% fewer blocked
connections are typically observed when comparing standard shortest path routing to the

ant-like agent routing described.

Some care has to be taken in the choice of system parameters. Our research is ongoing in
the area of self-adaptation of system parameters; e.g., chemical and link cost sensitivities
and results for this activity are reported in [White 98c]. We are investigating the sensitivity
of our swarm systems to the number of agents engaged in problem solving as well as

considering the effects of noise; i.e., unreliable agent knowledge.

As connection quality of service changes, connections are dropped and new routes
quickly found with traffic rapidly moving away from regions of the network that have
proven unreliable. Further, the fault location agent, detecting q chemicals concentrations
from multiple connection monitoring agents, quickly identified the faulty components

within the network. A simple diagnostic example is shown in Figure 32.

In Figure 32, two connections are defined, one from A to B and another from C to D.
Both connections experience poor quality of service and use monitoring agents to drop g-
chemical in the network. The numeric labels on the nodes and edges represent the
concentrations of g-chemical for that component. As can be seen in Figure 32, node E sees
twice the g-chemical as it is the common element for the two paths. The fault detection
agent therefore initiates diagnostic activity on this component. Further details on the use
of this architecture and its implementation for diagnosis can be found in [White 98b],

[White 99b] and in chapter 5.

141

Biologically inspired Architectures for Mobile Agents

Hill climbing in the space of q chemical as the primary strategy for fault localization
leads the fault detection agent to ’zero in’ on faulty components far more quickly than
random search. Consider the situation shown in Figure 32. Imagine that there is a single
fault detection agent present at A. If we allow migration based only on gq-chemical
concentration, the agent is forced to move to E; i.e. the detection agent reaches the faulty

node in a single move. Consider random migration as an alternative policy. Using this

policy, the agent has only a 173 probability of reaching E directly and has a far higher
expected number of moves before it reaches the faulty component. We have experimented
with a number of small graphs (10-20 nodes) with a variety of connection patterns and
have found the hill climbing strategy to take less than 1/4™ of the number of moves that a

random strategy would require.

FIGURE 32. Example Fault Localization

142

Biologically inspired Architectures for Mobile Agents

While the simple example described above demonstrates the utility of chemical
interference — in this case constructive — and a hill climbing migration strategy, it should
be noted that a simple detection mechanism based upon a concentration threshold leads to
false diagnoses. We have investigated the use of Reinforcement Learning and Discrete
Learning Automata as a means of learning the correct diagnosis for a network state. In
these learning systems, a vector of g-chemical concentrations on the node and its links
represents state. Referring to Figure 32 once again, the state vector for node E would be
(2,1,0,0,1,1,1), where we start with the concentration of q-chemical on the node followed
by the links beginning with the link from A to E and moving in a clockwise direction.
Feedback to the learning system is the result of whether corrective action resulting from
diagnosis improves the state of the system; i.e. q chemical concentrations are reduced. No
change in g-chemical concentration implies a misdiagnosis. Detailed descriptions of these

two interacting swarms are forthcoming in the following two chapters.

3.8 Summary

This chapter has described a number of naturally occurring multi-agent systems and
proposed a number of requirements for emergent problem solving by such systems.
Several sections in this chapter have analyzed the important characteristics of the naturally

occurring multi-agent systems and the SynthECA architecture based upon them.

This chapter has also provided a formal description of a multi-agent system that relies on
Swarm Intelligence and, in particular, has proposed trail laying behavior in order to solve

problems in a communications network, mapping specific roles onto SynthECA agents.

143

Biologically inspired Architectures for Mobile Agents

We have demonstrated how fault detection can arise as a result of trail laying behavior of
simple agents and we have proposed the use of ideas from Subsumption as guiding the

design of muiti-swarm systems.

While the ideas presented in this chapter are conceptually appealing, considerable work

remains to demonstrate the utility of the approach. This is provided in the next three

chapters.

144

CHAPTER 4 SynthECA agents for Management
and Control in Networks

4.1 Overview

This chapter describes how biologically inspired (SynthECA) agents can be used to
solve control and management problems in Telecommunications. These agents, inspired
by the foraging behavior of ants, exhibit the desirable characteristics of simplicity of
action and interaction. The collection of agents, or swarm system, deals only with local
knowledge and exhibits a form of distributed control with agent communication effected
through the environment as represented and described in the previous chapter. In this
chapter we explore the application of ant-like agents to the problem of routing in circuit

switched telecommunication networks.

4.2 Introduction

Routing in telecommunication networks has mainly been static to date. Early efforts to
introduce adaption into the routing algorithms of the Arpanet caused oscillations or

required excessive distribution of statistical information. With the advent of new

145

SynthECA agents for Management and Control in Networks

technologies and, in particular, high capacity networks, much more flexibility will be
required. Distance learning, video on demand, world wide information services such as
WWW servers and many other services create dynamic network load which (ideally)
should be taken care of by new algorithms. This is a new area of research with many
economic and technical implications. The purpose of this chapter is to explore what
swarm intelligence, and SynthECA agents specifically, might offer to solve these dynamic

and fundamentally distributed optimization problems.

The advantages of swarm intelligence are twofold. Firstly, it offers intrinsically
distributed algorithms that can use parallel computation quite easily. Secondly, these
algorithms show an ability to react quickly to changing network conditions by allowing
the solution to dynamically adapt itself to global changes by letting the associated swarm

agents self-adapt to the associated local changes.

4.3 Motivations

Networks today have a wide range of applications running on them with applications
having diverse statistical properties. This presents a significant challenge when deciding
which applications should share node and link resources for the purpose of optimizing
quality of service and, more generally, making best use of network capacity. Many would
assume that making best use of network capacity implies load balancing; however, this is
a simplistic assumption and ultimately it is user perception of the quality of service offered
by the network that is important. Anyone who has used real audio, or IP telephony

services on the Internet will certainly appreciate this.

146

SynthECA agents for Management and Control in Networks

The motivation for the algorithms in this chapter is that certain applications provide
better quality of service with a lower bandwidth requirement when sharing the resources
of the supporting network. This arises as a consequence of complementary statistical
properties or “natural synergy” of the particular applications. At least two distinct

approaches to the solution of this problem are possible.

An off-line, or planning solution is possible. In this approach, the set of connections to
be created is known in advance and routes for them computed to optimize a fitness
function. Typically, the fitness function used seeks to balance load across nodes and links
in the network and may take account of constraints of the devices themselves and user
routing preferences. See, for example, [Mann 95]. A hybrid approach, using local and
global search, can be found in [Clark 97]. Such approaches are characterized by the
requirement for a global view of the network including a need for notification of changes
to the topology of the network. Methods for simulating a dynamic environment include
optimizing network routing for a set of connection scenarios, or by using fuzzy input

values.

On-line approaches are also possible. In traditional networks, routing protocols are often
used that attempt to maintain a global view of the network. See, for example, [Tanebaum
96] or [Bertsekas 87] for discussions of Link State and Distance Vector routing. Several
agent-oriented approaches have recently been proposed that rely upon Reinforcement
Learning [Boyan 94] or appeal to principles drawn from Swarm Intelligence

[Schoonderwoerd 97], [Di Caro 97], [Di Caro 98], [Bonabeau 98], [Heusse 98] and

147

SynthECA agents for Management and Control in Networks

[White 98a], [White 98c]. In an on-line approach, agents compute routes for connections
in order to optimize their connection routing cost, where cost may represent an aggregate
statistic of delay, utilization, reliability and other factors. In these latter approaches, a
common characteristic can be observed. A global view of the network is not maintained,
no exchange of global information is permitted and we deal only with information that can
be measured locally. Also, these approaches are robust with respect to the loss of
individual routing agents. These characteristics have very positive implications with
respect to the robustness and scalability of the approach. Beyond the routing domain, and
more generally, the appeal of swarms of biologically-inspired agents for industrial
problem solving have recently been appreciated [Parunak 98]. Research into the problems

and potential of multiple, interacting swarms of agents is just beginning [White 98d].

Given the above comments, SynthECA agents seem a natural choice for this problem

domain.

4.3.1 Problem Description
Routing is the problem of finding paths between nodes in a communications network. In

Figure 33, a “telephone call” is to be set up between two points by finding a route that
connects the source and the destination. Links are able to carry application traffic up to the
total capacity of the link. In this thesis, it is assumed that bandwidth is used through
simple aggregation. Nodes are assumed to be capable of satisfying the switching demands
placed upon them. Links have an associated cost function. This is typically based on

distance (e.g., traffic delay), and/or on error rates.

148

SynthECA agents for Management and Control in Networks

A connection request is characterized by the kind of traffic (voice, data, and video)
which is required. This implies bandwidth requirements and potentially other constraints
such as maximum error rate, maximum number of hops, or maximum delay. Different
kinds of traffic can tolerate different delays and error rates, and these can be used as

parameters in a cost function, along with the link’s actual costs.

Point to multi-point routing is required in applications such as distance learning. In this
case, a single source node transmits and receives information from a number of
destination nodes, as in the case of a teacher giving a lecture to a number of students in a

distance learning application.

Multi-path routing is required in domains where data streams should not be disrupted

when a single component fails in the network. In these cases, data is routed via at least two

node and link distinct paths and the data streams merged at the destination!.

Link

Route

Connection

FIGURE 33. A Network Connection

149

SynthECA agents for Management and Control in Networks

The communications network will be idealized here as a weighted graph where the
vertices correspond to switching nodes, the arcs to the physical links, and the associated
weights to the cost value associated to every link. Both point to point and point to multi-

point roeuting amount to finding a minimum spanning tree in a graph.

4.3.2 Description of the Algorithm
The swarm algorithm solution to this routing problem relies on the movements of

artificial agents on the associated graph designed to make the global shortest path emerge.
When & connection request is made, a new colony of SynthECA agents is created and
associated Connection Creation Monitoring Agents (CCMA) are positioned on the source
and destination nodes. The CCMA on the destination node is created when the first
explorer agent arrives. The functions of the CCMA are to decide when a path has emerged
and when the current path is no longer the shortest path and that path re-planning should
occur. Fhese artificial agents correspond to a special class of automata called reactive
agents {as described in Section 2.2.2) that react to their local perception of the
environmnent by stochastically adopting predefined behaviours. The shortest path then
emerges from the movement and interaction of all these agents. This corresponds to the

first algorithm that focuses only on establishing a single point-to-point connection.

There are three classes of routing-related agent, as introduced in the previous chapter.

They are:

Explorer agents: these agents search for a path from a source to a destination.

I. This is & simplistic view of multi-path routing but will suffice for the algorithms proposed in this chapter.

150

SynthECA agents for Management and Control in Networks

Allocator agents: these agents allocate resources on the links used in a path from a

source to a destination.

Deallocator agents: these agents deallocate resources on the links used in a path from a

source to a destination.

As soon as we wish to establish multiple point-to-point connections, the problem
becomes more constrained since the connections consume bandwidth and that after a
while, some links might run out of available bandwidth. The extension is quite
straightforward, the graph arcs have an associated available bandwidth and a condition is
added for the agents to use a given arc: it should have enough bandwidth. Every time a
path has emerged and a connection has been established the amount of available
bandwidth is decreased on every arc of the path thereby adding additional bandwidth

constraints to the graph.

We assume here that all nodes are capable of running an extended Mobile Code

Environment as described in sections 2.2.4 and 3.5.10.

Let us now define the local rules of the artificial agent automata.

4.3.2.1 Point to Point Routing

For this case, the algorithm is quite straightforward. If the network is symmetricl, both
source and destination nodes of the connection are considered as host to a static agent

called the Connection Creation Monitoring Agent (CCMA). If the network is assymmetic,

1. A network is symmetric if its link costs obey the relation, Cj; = Cj;.

151

SynthECA agents for Management and Control in Networks

only the source node contains a CCMA. The explorer agents are created by the CCMA

and leave the node in order to explore the network following their local rules:

On each node, they choose a path using their MDF with a probability proportional to the
heuristic value (function of the cost and the pheromone level) associated with the link. The

details of the MDF used are shown in equations 8-11 on page 157,

The agents cannot visit a node twice (they keep a tabu list of their visited nodes in
memory) and cannot use a link if there is insufficient bandwidth available. The tabu list is

stored in agent memory.

Once the destination is reached, the agents return from whence they came by popping

their tabu list. On their way back, they lay down a pheromone trail.

When the CCMA on the source node judges that a shortest path has emerged, it sends a
special kind of agent, the allocator, in order to allocate the bandwidth on all links used
between the source and the destination. A path is considered to have emerged when the
majority of returning explorer agents follow it. The allocator follows a fixed path

consisting of nodes and links that form the connection.

n6

10

n8

7
FIGURE 34. Point to Point path\ "

152

SynthECA agents for Management and Control in Networks

Pheromone laid down on a link will evaporate over time. This is controlled by a constant
evaporation rate, r. In reality, a SynthECA agent is deployed on each node that contains a
single type one equation and this evaporates all chemicals, albeit at the same rate. An
alternative solution was implemented wherein several evaporator agents circulate within
the network but this solution was found to consume more network processing resources

without noticeable improvement of the quality of solutions found.

4.3.2.2 Multiple Point to Point Routing

This scenario is similar to the previous one except that we have now several connections
at the same time. Each connection corresponds to a different species and these species do
not interact except by allocating bandwidth, and therefore, by imposing constraints on the
other species by changing the environment. A species in SynthECA corresponds to a

chemical encoding.

4.3.2.3 Point to Multi-point Routing

4 n3 \
n4 né

10 2 ns

nl

w}

10

n8

7
FIGURE 35. Point to Multi-point path\ vy - ni2
”

Point to multi-point connections (an example is shown above) can be regarded as
multiple point to point connections starting from the same source node. The only

modification to the previous point to point algorithm concerns the allocator. Rather than

153

SynthECA agents for Management and Control in Networks

sending a different allocator for each destination, identical allocators are sent from the
source toward the destinations. Only the first allocator passing on the link will allocate the
bandwidth, and fan out points (also known as multi-cast nodes) are created on bifurcation
nodes. This is achieved by the allocator dropping an ‘allocated’ chemical on the node

which is sensed by any allocators that follow.

An alternative explorer algorithm was considered. In the latter algorithm, the each
explorer is given all of the destinations and return to the source node when one of them

has been reached.

4.3.2.4 Cycle (or Multi-path) Routing

n4 4 3 n6
2 nS
10 3 3
n7
FIGURE 36. Cyclical path ° 2 / 1

Elll 1 ni2

Cycle or multi-path routing can be regarded as two node and link disjoint paths
(excluding source and destination nodes) that connect a source node to a destination node.
An example is shown in Figure 36. The only modification to the original algorithm for the
explorer agent is that upon reaching the destination it turns around and finds a path back to
the source node that does not use any of the nodes or links used in the outward journey.
Paths of this type are frequently constructed for the purpose of fault tolerance, i.e., an

element on one path may fail but the circuit remains viable as a vehicle for the

154

SynthECA agents for Management and Control in Networks
transportation of data.

4.3.3 Detailed explorer agent rules of behaviour

There are two phases to the movement of an explorer agent: an outward exploring mode
and a backward trail-laying mode. The (simulation) algorithm used by an explorer agent
for a single connection (where only a single chemical is used and so the third index on S is

dropped) is shown below. Comments are shown in italics within curly brackets.

. Initialize the route finding simulation do:
Sett:=0
For every edge (i,j), set Sij(t) :=0,cr. =0
Place m agents on the source node.
Explorer agents are created at frequency eg

end

{Start the explorer agents from the source node}
Seti:=1 {tabu list index}

Fork:=1tomdo

Place starting node, s, of the kth agent in Tabuy[i].

o

3. [Migrate the explorer agents one node at a time}
Repeat until destination reached:
Seti:=i+1
For k:=1 to m do

Choose node j to move to with probability, pijk(t)

Move the k' agent to node j.
Update explorer agent route cost: cry. = cry + Ci;(u)

If er >cr, then kill the k'™ explorer agent.

max
Insert node j in Tabu[i].

At destination go to 4.
end
4. Whilei>1
Move to node Tabuk[i].

Update pheromone levels: Sij(t) = Sij(t) + ph(cry)
i=i-1

end

155

SvnthECA agents for Management and Control in Networks

5. At the source node do:
If the path in Tabuy_is the same as b% of

paths in PathBuffer then create and send an allocator agent
If t > T, then create and send an allocator agent for shortest path found

end

In the single connection algorithm above, the following symbols are used:

Sij(t) is the quantity of pheromone present on the link between the i and j‘h nodes,

Cjj(u) is the cost associated with the link between the i and j™ nodes at utilization, u.
cry is the cost of the route for the Kk explorer agent.
Tabuy is the list of edges traversed.

Tinax Is the maximum time that is allowed for a path to emerge.

PathBuffer is the array of paths obtained by the (up to m) explorer agents.
Clmax IS the maximum allowed cost of a route.

ph(cry) is the quantity of pheromone laid by the Kt explorer agent.
Pjjik(t) is the probability that the k™ agent will choose the edge from the i to the jt

node as its next hop given that it is currently located on the i node.

More generally, for multiple simultaneous connection finding, with one chemical used

for each connection to be computed, the probabilityl, pijk(t), with which the k™ agent

chooses to migrate from its current location, the i node, to the j[h node at some time, t, is

given by:
pijk (t) = Fijk(t) / Nijk(t)’ R <R* (8)
= Hj(0)
Niji(® = Zyin aq) Fine(®))
Fiji(®) = TS50 %[PR ;5917 10

1. A more conventional representation of this probability might be pjkli(t)v indicating the conditional nature
of the probability.

156

SynthECA agents for Management and Control in Networks

Fiji® = I, [Sie(0] ke [Ca)T PR 0T 2, j = (1

=0 otherwise
where:
0> B,S are control parameters for the k™ agent and ' chemicals for which the k™

agent has receptors, oy, = 0 if the agent does not have a receptor for the i chemical,
Njjk(0) is a normalization term,

A(1) is the set of available outgoing links for node i,

Cij(u) is the cost of the link between nodes i and j at a link wtilization of u,

Rj;(t) is the reliability of the link between nodes i and j at tirne t.
Sjjr(t) is the concentration at time t of the *P chemical on thes link between nodes i and

J:
R is a random number drawn from a uniform distribution (0-,1],

R* is a number in the range (0,1],
H;;(t) is a function that returns 1 for a single value of j, j*, amd O for all others at some

time t, where j* is sampled randomly from a uniform distribsution drawn from A(i),
Fi;i(t) is the migration function for the kth agent at time t at mode i for migration to
node j,

™ is the link with the highest value of the product: IT, [Siﬁr(t)]o‘kr[Cij(u)]'B.

It should be noted that equations 8-11 take into account the rel iability of the link through
the terms R;j(t). The reliability measure arises from a reliability pheromone being
deposited in the network by fault detections. These agents are the subject of the next

chapter and are described at length there.

The explorer agent has two modes of behaviour. If travelling towards its destination, it
finds links at each node which the agent has not yet traversed., and which have enough
bandwidth available for this connection. It selects a link from this set based on the

probability function pijk(t). Having selected a link, the selected link is added to the tabu

list. The cost of the journey so far is updated and then the link to the next node is

157

SynthECA agents for Management and Control in Networks

traversed. An explorer agent that stays without being able to move for more than a given
number of iterations simply dies. Similarly, an agent whose journey cost exceeds a given
threshold also dies. The robustness of the algorithm to the failure of individual agents is a

highly attractive feature of the algorithm.

At the destination, the explorer agent switches to trail-laying mode. When travelling
back to the source node the agent pops the tabu list and moves over the link just popped

dropping pheromone at a constant rate proportional to the cost of the route found.

The CCMA at the source node maintains a set of statistics relating to the set of routes
that have been found so far in both point-to-point and point to multi-point connections.
This is achieved by querying the returning agents (and agents which are sent from the
destination node to this node) about the path which they took. This information is
maintained by their tabu list. The node records the frequency of agents following a
particular route over a given time period (a moving window). It also records details such
as the total cost of the route. A good route is one for which a proportion of agents in the
current time window exceeds a specified limit; e.g., 95%. When the limit is exceeded, the
node sends out an allocator agent that creates the connection by allocating resources in the
network. An alternate algorithm used buckets. That is, routes of a given cost in a certain
range were all considered equivalent. When a specified limit of all routes lie within one

bucket, an allocator is sent with the route chosen randomly from those within the bucket.

Once an allocator agent is dispatched, if it does not succeed in establishing the

connection because, for example, another connection used all the available bandwidth, it

158

SynthECA agents for Management and Control in Networks

simply backtracks. In the meantime, explorer agents continue to explore the problem
space. The CCMA at the source node may send out an allocator agent again when the path
emergence criteria are satisfied, or may choose to delay sending the allocator out again

until the problem space settles to a steady state.

4.3.4 Experimental Results

The section reproduces and discusses the results of an investigation into the effects of
the sensitivity parameters: & and B. Our experiences using the algorithm suggest that its
important parameters are the sensitivity to pheromone, o, and the sensitivity to cost, . It
is prudent to question the validity of the results based on such a small number of graphs.
However, observations over many runs show that the analysis of the results represents a
reasonable picture of what happens on different graphs and connections. These findings
are consistent with other ant search applications [Kunz 94], [Color 92] which have also
identified the need for appropriate choice of control parameters. In order to investigate the
sensitivity of the algorithm to these parameters, we decided to fix the other parameters.

The values used are shown in Table 1:

TABLE 1. Simulation Parameters

Parameter Value

Agent creation frequency Every 10 cycles
Quantity of pheromone dropped 10 units
Emergence criterion 90% follow a path
Number of agents created 15

Path buffer size 40 agents
Pheromone evaporation rate 1.0 units/cycle
Maximum search time 400 cycles

159

SynthECA agents for Management and Control in Networks

FIGURE 37. Initial Test Network

The graph we used and its associated weights are shown in Figure 37. The initial test
network contained only nine nodes and, in this investigation, links where assumed to have
sufficient capacity to form the connection. The integer values associated with the links in
Figure 37 are the cost of using that link in forming the connection. The connection
requested in this study was from node nl to node n9. One hundred runs were performed in
order to assess the robustness of the algorithm. In all experiments, the path that emerged
was nl-n2-n6-n7-n9. This route has the lowest cost (19) and shortest path (least number of
hops) although the later is an artifact of the graph selected. Results for a selection of o and
B values can be seen in the table below, all measurements given as the number of agents
needed to achieve path convergence The numbers in the table represent the number of

cycles required to converge to a solution.
TABLE 2. Results of Initial Experiments

a.B 2,1 2,2 42 8,2
Minimum 75 75 130 130
Maximum 400 220 195 190
Mean 220 175 159 150
Std Dev. 45 25 14 10

160

SynthECA agents for Management and Control in Networks

When the algorithm starts, the cost part of the MDF is important, and essentially a
greedy heuristic comes into play. The actual value of & is unimportant, as only a small
amount of pheromone (close to zero) is present on the links, therefore the only factor
influencing the choice of links is the actual cost on that link. The choice of next hop

depends almost exclusively on link cost.

As routes are found, pheromone is laid on the links that form the path. The amount of
pheromone laid is inversely proportional to the total cost of the route, and acts as a global
measure of its ‘goodness’. This brings the reinforcement part of the probability function
into play. The sensitivity to pheromone, ¢, influences the choice links, and links with

more pheromone are more likely to be chosen.

The first result set shows a broad spread of times to find solutions, with a very high
standard deviation. The mean is also the highest of the set. The high standard deviation
means that confidence in a path is not high, and the system continues to use the greedy
heuristic to explore other paths. In this particular case, we consider the standard deviation
too high. The second and third set of results show similar results for minimum, maximum
and mean, but with standard deviation being the most different. The system finds results
quickly, and reinforces good solutions, but confidence in the solutions found is at a level
such that other solutions are not rejected, but continue to be explored. These seem to be
the best sets of results. The final set of results show a fast, almost deterministic algorithm.

This makes it undesirable for dynamic routing or as a candidate for a system that reacts to

change quickly.

161

SynthECA agents for Management and Control in Networks

It is important that other solutions are explored and evaluated, as this is a stochastic
approach. Reducing the standard deviation shows that the algorithm is more deterministic,
which is not desirable. On the other hand, too high a standard deviation is also

undesirable, as good solutions are not sufficiently reinforced.

Observations and analytical analysis show that with high values of «, the system
becomes ‘locked into’ the solution found first, which in this experiment appears to be the
best solution. This leads to problems later when bandwidth is removed from a link on that
path. The system reorganizes, but when the bandwidth is reinstated, the previous solution,
which is typically the best solution, is not found as the high sensitivity to pheromone is
forcing the choice of paths where ants have previously been. However, it is important to

note that with all values o. and 3 routes are found.
We conclude that suitable values for o and B are: (a=2, B=2) or (0=4, B=2).

These combinations ensure that a solution is found quickly, good solutions are

reinforced, and that better solutions still have a reasonable chance of emerging. In order to

add support for this choice, a meta GA! was run. The meta GA encoded values of o and B
in the range 0-8 using increments of 0.0125. Connections in the network of Figure 37 were
computed for the source-destination pairs: (nl, n9), (n2, n9), (n3, n8) and (n5, n8). The
meta GA computed each pair 100 times, using as fitness the mean number of agents
required to compute the pair plus two times the standard deviation of that value. A

population size of 20 was used and 10 generations were run. The resulting fittest (c,3) pair

1. For more details on the concept of a meta Genetic Algorithm consult [Goldberg 89], for example.

162

SynthECA agents for Management and Control in Networks

was (4.25, 2.5). While not conclusive, these values are similiar to those used in other Ant
System research. The sensitivity to these parameter settings also seemed similiar to

Dorigo’s AS system.

4.4 Further Enhancements to the Basic Algorithm

4.4.1 Introduction
This section discusses some of the finer details of the algorithm, and specific

enhancements which improve the behaviour of the algorithm in a wide variety of

circumstances.

As stated previously, there are three kinds of agents: Explorers, Allocators and
Deallocators. Explorers explore the graph, selecting their movement according to an MDF
described earlier. After some time, large proportions of the agents are likely to follow the
same path. The criterion used to determine if a solution has emerged is quite simple: more
than 90% of the agents have to follow the same path. This path is the solution given by the
algorithm. It was found that in a network with several paths of equal cost (or nearly equal)
the algorithm could oscillate between solutions, causing path emergence times to lengthen
considerably. In order to solve this, the bucket method was employed, i.e., paths within a
certain range were considered equivalent and when the bucket contents represented the
convergence threshold, an allocator agent was dispatched to establish the connection by
reserving the required amount of bandwidth on each of the links of the solution chosen

randomly from those within the bucket.
The connection is deemed to have been established when the allocator returns. However,

163

SynthECA agents for Management and Control in Networks

the allocator agent may fail to allocate resources, as bandwidth may be consumed by other
connections during the time the last explorer returns to the CCMA and the decision to
send an allocator is made. In this case, the allocator agent backtracks along the already-
allocated path fragment, releasing resources until it arrives back at the source node. The
CCMA then freezes the allocation decision (“backs off™”) for a period of time, continuing

to send explorer agents into the network.

4.4.1.1 How agents choose the next link
The previous sections demonstrated that the desired agent behaviour could be achieved

using a probabilistic function to govern the agents’ movement. For a particular explorer
located at a node in the graph, the probability of choosing a link (assuming enough
bandwidth is available on that link) is proportional to the amount of pheromone on it. In
addition, the ‘cost’ of the link is taken into account. For each link, the probability of
selection is proportional to the amount of pheromone raised to the pheromone sensitivity,

o, and multiplied by the cost of that link raised to the cost sensitivity, B.

Experiments were undertaken with B = O and with o = 0. In the former case, the time to
converge on the shortest path was considerably higher, often by a factor of 5. The
sensitivity to cost allows the agents to find better solutions in the early stages of the search
(this is the so-called ‘greedy heuristic’). With o = O, essentially the agents do not
collaborate and gain nothing from the changing pheromone levels in the environment. So,
when acting alone, the algorithm does not benefit at all from being population based and

only finds shortest paths by chance (if at all) depending upon the local graph topology.

164

SynthECA agents for Management and Control in Networks

When o is non-zero, the agents form an interacting population and through a feedback
mechanism (the pheromone trail), the search effort is distributed among the agents which
tends to avoid local optima. The use of both cost and pheromone sensitivity greatly

improves the results of the algorithm.

All the links connected to the current node are first considered. Then, the links already
visited (i-e., in the rabulList) are removed. This tabuList is updated each time the agent
moves: its previous position is added to the rabuList. This way, an agent can not go twice
on the same position. We use this to avoid cycles in the exploration. Then, the links
without sufficient available bandwidth for the connection are removed from the search.
Acknowledging the bandwidth constraint during explorer search significantly decreased
path emergence times when compared to an algorithm where the constraint was applied

back at the source node by the CCMA.

4.4.1.2 Pheromone
The way the pheromone is dropped on a graph is different than with real ants. Some

species of ant drop pheromone both to and from a food source. However, explorer agents

only drop pheromone on their way back to the nest, in backward mode.

Contrary to real ants, the aim is now to find the path with the lowest cost and not the
shortest path. The amount of pheromone depends on the cost of the way they have found,
and is inversely proportional to the cost of the path. In this way, a cheaper path will
receive a larger amount of pheromone and will hence attract more agents. This is, in

effect, a positive feedback loop.

165

SynthECA agents for Management and Control in Networks

Search using positive feedback would lead to run-away situations unless there were
some other control mechanism. The mechanism used in this approach is pheromone
evaporation. This way, previous solutions that have become out of date can be ‘forgotten’.
If this were not the case, the algorithm would become locked onto an early solution (local
optimum). Imagine that one path was discovered at an early stage but that, now, fewer and
fewer agents use it. The evaporation process will ensure that the pheromone disappears if
pheromone is not dropped quickly enough, thereby ensuring the dominance of the

emerging path.

4.4.1.3 Source and Destination Nodes
For a symmetric graph, half the agent population begins at the source node and search

for the destination node; for the other half, the opposite is the case. Formally, the first
agent reaching the destination node initiates the reverse search. Therefore, agents search
from both source and destination nodes. In this way local optima due to the structure of the

graph is minimized.

When explorer agents are created, they start at their creation node. They look at all the
links connected to that node, and choose the next based on the probability function
described earlier. The agent moves from the current position to the next position, if there is
one, or else commits suicide (as there is nowhere else for it to go). The conditions for
suicide are either insufficient bandwidth or all remaining links have already been

traversed.

166

SynthECA agents for Management and Control in Networks

4.4.1.4 Point to Multi-point Connections
Such connections have to be created when you want to send the same message from the

same source point to many destination nodes. If you create n point to point connections
between the source node and the destination nodes, on some links you will have a high
redundancy: you can repeat up to n times the same message and you will use n times the
same amount of bandwidth. To avoid such a redundancy, you can allocate the amount of
bandwidth for one message once on the common part of the path, and then duplicate the
message when the different paths diverge. This provides an economy of bandwidth. The

form of routing is equivalent to finding 2 minimum spanning tree of a graph.

In order to achieve this, each connection needs to know its associated connections (i.e.,
the other limbs of the point to multi-point connection). This is very important for the
allocator, which must ensure that the allocator agents created by the other connections do

not allocate bandwidth if others in that spanning tree have already done so.

4.4.1.5 Agent Species

In order to reuse what the previous connection explorer agents have done, a species id
was given to each connection. This species id was determined by the source and
destination node addresses. Therefore, two connections between the same points having

receive the same species id.

In that way, connections with the same species id will use the same pheromone. For new
connections, there may already be pheromone between the source and destination in the
graph. The agents do not have to search from the beginning, as at least one solution to the

search is already present. This modification can save considerable search time.
167

SynthECA agents for Management and Control in Networks

4.4.1.6 Load Balancing
The aim of load balancing is to find a route between the source and the destination,

while trying to have a homogenous partition of the traffic. The aim is to avoid having
empty links while others are full. The problem is then to favour a path with low
occupancy. The first thing is to drop more pheromone on empty links than on full ones.
We modified the algorithm by multiplying the real cost of a link by a Cost Function. This

function is based on the occupancy of the link (used bandwidth / total bandwidth).

Four cost functions were mainly used during all of these experiments. The first of them
is the defaultCostFunction. This is a constant function and it is shown in Figure 38d. This
function represents the cost of a simple routing algorithm without a special weight given
to the occupancy of the link. This cost function is equivalent to the standard behaviour of

the algorithm described previously.

10 10
1 1
0 @) 1 0 (b) 1
10 10
1 1
0 1 0 !
(c) (d) FiGURE 38. Link Cost Functions

The cost functions we investigated are shown in Figure 38a, 38b and 38c share two

characteristics. They return one if the link occupancy equals zero and they return 10 if the

168

SynthECA agents for Management and Control in Networks

link occupancy equals one.

This normalization seems to compare the effects of each cost function for the same

conditions. We have only chosen continuous functions.

The mathematical functions used for Figure 38a, 38b and 38c are given by the equations
in Figure 39. The mathematical function for Figure 38d is simply the constant 1. The
results of using this modification are presented in a later section. The mathematical form
of Figure 39c requires some comment in that it closely resembles the response time
characteristic associated with the closed form M/M/1 queuing result. Hereafter, we will
refer to the functions in Figure 38a, 38b and 38c as linear, non-linear and quartic

respectively.
Vxe [0, 1], f(x) = 9x+1 (12)

0.25 < x<0.75, f(x) = (18.\:—14—4) (13)

Vie [0, 1], flx) = X (x+8)+1 (14)

FiGURE 39. Mathematical Cost Functions

4.4.2 The Genetic Algorithm-like approach
In certain cases, the absolute best path (we call it path #1) is not available due to very

heavy traffic allocation on it. The algorithm therefore finds another path (path #2). During
the time needed to find path #2, the agents have dropped a large amount of pheromone on
the trail. Due to the pheromone sensitivity of the agents, this path is more likely to be
followed. Sometimes, the agents can be attracted by that trail in such a way that they will

not explore other links any more. The probiem is that, if certain changes happen in the

169

SynthECA agents for Management and Control in Networks

graph, for instance path #1 becoming available, the algorithm will not be aware of them

because its agents will not explore new links.

To avoid to be locked into such a local optimum, the pheromone sensitivity has to be
reduced at that moment. With lower pheromone sensitivity, the agents are more likely to
explore other links. The problem is when to decide that the sensitivity has to be lowered

and what new pheromone sensitivity to give to the agents.
Each explorer agent encodes its o and [sensitivity values that are used in the
calculation of pijk(t). Initially, these values are selected randomly from a given range.

Hence, the population of m agents initially sent out into the network has a range of
sensitivity values. When these agents return to the source node, having found a route to a

given destination, the route cost, Cry, is used to update the fitness value, f(c.,B.k),

associated with the (o,) pair. The equation used to update f(o,3,k) is given by:
fnew(a7Byk) = fo[d(avB!k) + Y(crk - fo[d(a,B,k)),

where 0 <y< 1.

It can easily be seen that an agent returning with a lower route cost than the current
f(o.B,k) will cause f(a,B.k) to decrease. However, several agents must return with the

same cry. value before f(at,B.k) approaches cry.. A discrete space for (a.,p) was chosen in

order to ensure that updates to f(c,3,k) would occur. A discounted feedback mechanism as
shown above is required in this system because of the stochastic nature of the search. The

same (a.,) encoding may result in several different cry values and f(o,B,k) represents the

170

SynthECA agents for Management and Control in Networks

average over all possible routes found in the network. Obviously, with ¥ set to zero it is

possible to ignore previous searches with a given encoding.

As stated earlier, the source node retains a path buffer that contains m paths. The source
node also retains m (o,) pairs and their associated fitness values. When new agents need
to be created and sent out to explore the network, the fitness values are used to create new
(ce,B) pairs. First, parent (o,3) encodings are selected based upon their f(ct,8,k) values.
The lower the value of f(c,$,k), the more likely the (o,) encoding is to be chosen. A new
encoding is then created by single point crossover and mutation operators using a
mechanism well known in Genetic Algorithms (GAs) [Goldberg 89]. Example crossover

and mutation operators are shown in Figure 40.

FIGURE 40. An example of Mutation

The figure above shows the genotype of two agent parents that encode o and B. A single
crossover point is chosen (more are possible) and two offspring are generated. One

offspring is discarded and the other undergoes mutation as shown above.

171

SynthECA agents for Management and Control in Networks

The way we have achieved this is with a Genetic Algorithm-like process. As stated
above, each agent has its own cost and pheromone sensitivity. At the very beginning, all
the agents have random sets of parameters that are defined within a given range. Seeding
the population with the (o) values established using the meta-GA was also performed,

with slightly improved results.

When an agent returns, its set of parameters is stored along with the cost of the route
found. Its parameters are linked to the cost of the path found. This cost has the same role
as the fitness function of a GA. When creating a new agent, the sets of all of the last
returning agents are considered. An intermediate population of parameters is created: each
set has a probability of being chosen proportional to its fitness (the cost of the associated
path). Some random parameters are automatically added to the population. Given that the
encoding is a bit string, the spectrum of parameter values is discrete, a property which is
essential for the use of the updating equation for f(o,8,k). The negative values allow
agents to flee the main trail and therefore to explore new links. If these values are useful
(i.e., they cause better paths to be found) they will be stored for future ‘breeding’,
otherwise they will be forgotten. Then the genetic operators such as mutation and
crossover are carried out. Finally, agents with the corresponding set of parameters are

created and sent out to explore the graph.

These random elements add an extra degree of variability to parameters and this is

needed to avoid the convergence of the parameters.

We have observed that the algorithm is able to adapt to a new situation much more

172

SynthECA agents for Management and Control in Networks

quickly when using these adaptive parameters. The time needed to discover the new path

was about 2 or 3 seconds instead of half a minute to minutes before!, depending of the

value of the fixed pheromone sensitivity.

This approach differs from a conventional GA in that, in this algorithm, we are trying to
avoid the convergence of the population because it tends to lead to local optima. This is
perhaps closer to work on co-evolving populations because the environment of the agents
(the network and its representation, the graph) is modified by their actions. There is
considerable inter-play between the pheromone laying activities of one agent with the cost
of a path found by another agent and, therefore, the fitness associated with the (o)

encoding of pheromone and cost sensitivity values.

4.4.3 Experimental Setup

FIGURE 41. Experimental Network 1

Two graphs were used during experimental investigation of the adaptive system for the

three problems outlined earlier: point to point, point to multi-point and multi-path. These

1. Incases where a large number of equivalent paths are present in the network and the 90% simple threshold for path
emergence is used.

173

SynthECA agents for Management and Control in Networks

are shown in Figure 41 and Figure 42. The numbers associated with the edges in these
networks represent the costs of the edges at zero edge utilization. Each edge is considered

to have a capacity of 63 units.

For problem one, the point to point path finding scenario, ten randomly generated traffic
profiles were created for all source-destination pairs with bandwidth requirements
sampled uniformly from the set {0, 2, 4, 6, 8, 10} bandwidth units. A bandwidth
requirement of zero units was taken to mean that no path need be calculated for the
source-destination pair. Paths were calculated such that the utilization of the network
increasing by the bandwidth requirements of the traffic as paths emerged. All paths were
computed in parallel. Initial network edge utilizations of 0, 30, and 50% were considered
in order to test the effects of four different cost functions. For problem three, the same
randomly generated traffic profiles were used for experimentation. For problem two, ten
randomly generated traffic profiles were created with either 2,3 or 4 destinations.
Bandwidth requirements for the point to multi point requests were identical to problem

one.

FIGURE 42. Experimental Network 2

nif—2Tn2 17 nl2
4 4 n6.3\ "> 37
n8 n3\ /4 1 3
4 n4 7 nl3 4
° 310 nl 54/ull
n9 . nl4 4 his

174

SynthECA agents for Management and Control in Networks

A population size of 50 was used with path emergence considered to have occurred

when 90% of the population follow a given path. A maximum of 100 cycles (or
generations) of the path finding algorithm was allowed before path calculations were
stopped and 20 agents per cycle were sent out into the network for path finding. The value
of o was allowed to vary in the range -0.25 to 3 and the value of B was allowed to vary in
the range -0.125 to 1.5. A total of 16 bits was allowed for the encoding of o and also for 3.
When adaptive search was contrasted with its non-adaptive counterpart, with constant o
and B, values of 2 and 1 respectively were used. These constant values were found to be a
reasonable compromise for path finding. A value of 10 was chosen for Q, the constant of
proportionality for the quantity of pheromone to be laid. An indirect representation was
used with mapping of bit strings into floating point values in the above ranges in such a
way as to cover the ranges uniformly. Values of 0.8 and 0.01 were used for the
probabilities of crossover and mutation respectively. Single point crossover was used as

the crossover ope€rator.

Four cost functions were used in the experiments. These are shown in Figure 38. These
cost functions are all functions of the utilization of the capacity of the network edge. It
should be noted that the equation implied by Figure 38d is a constant implying that the

cost is independent of edge utilization.

4.4.4 Results for Problem 1
Tables 3, 4 and 5 contain the results of experiments for constant o and B for the two

experimental graphs with different initial edge utilizations for the path finding problem.

175

SynthECA agents for Management and Control in Networks

Tables 6, 7 and 8 contain the results of experiments where o and B were allowed to adapt

during search. The mean and standard deviations of run times are given for the various

cost functions used. By comparing tables 3 and 6, 4 and 7, 5 and 7, the results indicate that

TABLE 3. 0% Initial Utilization, o constant
graphl graph2
Mean (secs) 25.12 31.22
38a std dev. (secs) 2.68 - 3.42
Mean (secs) 32.67 37.94
38b std dev. (secs) 4.11 4.62
Mean (secs) 27.56 30.22
38c std dev. (secs) 2.76 3.34
Mean (secs) 22.18 25.89
38d std dev. (secs) 2.07 3.01
TABLE 4. 30 % Initial Utilization, o constant
graphl graph2
Mean (secs) 26.11 32.21
38a std dev. (secs) 2.99 3.98
Mean (secs) 27.33 3143
38b std dev. (secs) 3.22 4.76
Mean (secs) 22.99 29.16
38c std dev. (secs) 2.41 3.11
Mean (secs) 22.18 25.89
38d std dev. (secs) 2.07 3.01
TABLE 5. 50% Initial Utilization, o constant
graphl graph2
Mean (secs) 25.55 32.28
38a Std dev. (secs) 2.71 3.72
Mean (secs) 33.69 38.96

176

SynthECA agents for Management and Control in Networks

38b Std dev. (secs) 421 4.81
Mean (secs) 33.11 35.65
38c Std dev. (secs) 3.99 4.29
Mean (secs) 22.18 25.89
38d Std dev. (secs) 2.07 3.01
TABLE 6. 0 % Initial Utilization, off adaptive
graphl graph2
Mean (secs) 1891 23.99
38a Std dev. (secs) 1.52 298
Mean (secs) 28.11 28.01
38b Std dev. (secs) 231 241
Mean (secs) 20.09 24.22
38¢c Std dev. (secs) 1.55 2.11
Mean (secs) 17.1 19.67
38d Std dev. (secs) 1.39 1.65
TABLE 7. 30% Initial Utilization, oy adaptive
graphl graph2
Mean (secs) 19.11 24.11
38a Std dev. (secs) 1.6 2.77
Mean (secs) 21.2 25.22
38b Std dev. (secs) 1.91 3.51
Mean (secs) 17.01 2211
38c Std dev. (secs) [.61 241
Mean (secs) 17.1 19.67
38d Std dev. (secs) 1.39 1.65
TABLE 8. 50% Initial Utilization, o3 adaptive
graphl graph?2
Mean (secs) 20.18 2491
38a Std dev. (secs) 2.01 222
Mean (secs) 23.99 28.99

177

SynthECA agents for Management and Control in Networks

38b Std dev. (secs) 231 2.54
Mean (secs) 2495 27.11

38¢ Std dev. (secs) 2.88 3.11
Mean (secs) 22.18 25.89

38d Std dev. (secs) 2.07 3.01

the adaptive system is clearly superior to the simple non-adaptive algorithm. The adaptive
algorithm is typically 25% faster than the simple algorithm in finding paths for the two
experimental graphs across the range of initial utilizations chosen. The standard deviations
for search times also decrease when comparing the adaptive to the non-adaptive systems,
again indicating that adaptation of o, values has improved predictability of the search
process. The results for 0, 30 and 50% initial edge utilization for cost function 6c being the
same in tables 1, 2 and 3 can be explained by the fact that this cost function does not vary
with the utilization of the network edges. By the same argument, tables 4, 5 and 6 show no
variation in search times for cost function 38d. The mean edge utilization results are not
included here due to space restrictions. However, cost function 38c provided the best

overall results when reviewing the standard deviation on edge utilization.

4.4.5 Results for Problem 2
Tables 9 and 10 contain the results of experiments for constant and adaptive a,p for the

two experimental graphs respectively. In both of these tables an initial edge utilization of
zero was used. Results for an initial edge utilization of 30% and 50% are not presented as

they exhibit similar patterns to those provided for problem one and provide no further

178

SynthECA agents for Management and Contro! in Networks

insight into the effects of the cost function chosen.

TABLE 9. 0% Initial Utilization, o constant
graphl graph2
Mean (secs) 62.91 80.01
6a std dev. (secs) 6.99 901
Mean (secs) 82.01 99.11
6b std dev. (secs) 11.1 11.91
Mean (secs) 70.65 80.11
6¢ std dev. (secs) 7.01 991
Mean (secs) 56.99 65.85
6d std dev. (secs) 5.61 791
TABLE 10. 0% Initial Utilization, ocf adaptive
graphl graph2
Mean (secs) 45.31 55.91
6a std dev. (secs) 3.41 7.15
Mean (secs) 67.41 67.19
6b std dev. (secs) 545 5.55
Mean (secs) 47.34 56.67
6¢ std dev. (secs) 3.51 5.01
Mean (secs) 41.4 42.99
6d std dev. (secs) 3.03 3.97

Once again, comparing tables 9 and 10, the adaptive system is clearly shown to be

superior to the simple AS.

4.4.6 Resulits for Problem 3
Tables 11 and 12 contain the results of experiments for constant and adaptive a,f3 for the

two experimental graphs respectively for the problem of finding a cyclical path between

two nodes in the network. In both of these tables an initial edge utilization of zero was

179

SynthECA agents for Management and Control in Networks

used. Results for an initial edge utilization of 30% and 50% are again not presented are

they exhibit similar patterns to those provided for problem one and thus provide no further

insight into the effects of the cost function chosen.

TABLE 11. 0% Initial Utilization, o} constant
graphl graph2
Mean (secs) 51.5 64.98
6a | Std dev. (secs) 5.94 7.11
Mean (secs) 68.91 76.98
6b | Std dev. (secs) 8.97 10.01
Mean (secs) 60.12 64.09
6c | Std dev. (secs) 5.92 7.98
Mean (secs) 48.3 56.74
6d | Std dev. (secs) 491 6.71
TABLE 12. 0% Initial Utilization, o3 adaptive
graphl graph2
Mean (secs) 38.56 49.02
6a | Std dev. (secs) 3.01 5.87
Mean (secs) 57.6 55.37
6b | Std dev. (secs) 4.32 4.58
Mean (secs) 43.09 4941
6c | Std dev. (secs) 3.07 4.76
mean (secs) 34.12 41.56
6d | std dev. (secs) 2.9 3.21

As tables 11 and 12 clearly show, the adaptive system outperforms the basic path finding

system with constant & and 3 values and exhibits improvements that are similar to those

180

SynthECA agents for Management and Control in Networks

observed for problems one and two.

It should be noted that when the search for a path starts, the cost element of the

probability function dominates the calculation of pijk(t)’ and an almost greedy heuristic

comes into play, i.e., the least cost edge is probabilistically chosen. The actual value of o
is relatively unimportant, as only a small amount of pheromone is present on the edges.
Therefore, the main factor influencing choice of links is the actual cost of that edge. As
routes are found, pheromone is laid on the edges that form that path. The amount of
pheromone laid is inversely proportional to the total cost of the path found, and acts as a
global measure of ‘goodness’. As the quantity of pheromone rises, this brings the

reinforcement part of the probability function, pijk(t), into play. The sensitivity to

pheromone, o, influences the choice of edges, and edges with higher pheromone
concentrations are more likely to be chosen. It can easily be seen, therefore, that the
importance of edge cost and pheromone concentration varies throughout the search

process and that adaptation of the appropriate sensitivity parameters likely to be desirable.

Finally, allowing negative values for o and [has introduced the ability for agents to
choose low pheromone concentration, high cost, edges. This has improved the ability of
the system to recover from situations where agents have laid down large concentrations of

pheromone on a non-optimal path early on in the search process.

4.5 Load Balancing Experimental Results
In order to carry out reproducible experiments, a special connections manager was
developed. This is described briefly in Appendix A. With it, the user can choose the
181

SynthECA agents for Management and Control in Networks

connections within the list of all the connections created which one he wants to uses and in
what order. He has to define the cost functions he wants to compare, and the number of
runs. Then, the program will establish the first connection of its list. When the path is
allocated, this connection is stopped (without removing its agents or its allocation of
bandwidth from the network: the important point is that the modifications due to the
former connection still remain in the graph) and the next connection is launched, and so

on, until the list is empty.

The criterion used to measure if the load balancing of an experiment is good or mot was
the standard deviation of the occupancy of the links in the graph. A hypothetically perfect
routing, with all the links at the same level of occupancy, will have a standard deviation in
link utilization of zero. A very bad routing, with all the line empty but one having a
utilization close to 100% will have a very high standard deviation. The criterion for good
routing solutions is the lower the standard deviation, the better the load balarncing.
Therefore, we used the standard deviation as a means to measure the results of our

experiments.

The use of a species id was not good for those experiments because instead of spreading,
the connections having the same species id tried to follow the pheromone trail of its kind.
This is the reason why we used connections with different bandwidth (even slightly - in

the order of 0.1 difference) in all those experiments.

The first experiment (experiment #1) was on the graph shown in Figure 41, with a set of

8 different connections between nl and nl2. In a second experiment (experimemt #2),

182

SynthECA agents for Management and Control in Networks

performed on the graph shown in Figure 42, we used another set of connections that
seemed more realistic for us. In reality, you have a lot of connections using a small

percentage of the total bandwidth. This set was made of:

¢ one connection whose bandwidth represents 20% of the maximum bandwidth avail-
able,

e 2 connections whose bandwidth represents 10% of the maximum bandwidth available,
¢ 4 connections whose bandwidth represents 5% of the maximum bandwidth available,
e 12 connections whose bandwidth represents 1% of the maximurm bandwidth available.

For experiment #1, the first thing that was obvious, was that there was a spreading effect
in using a cost function different from the defaultCostFunction. Secondly, it appeared that
there was not one optimal cost function for all occupancy ranges. In fact, for an initial
occupancy of 0%, the linear cost function gave the best results. For an initial occupancy of
25%, the non-linear cost function gave the best results. Finally, the guartic cost function

provided the best results for the 50% initial occupancy.

We then tried to improve the algorithm. We had seen that multiplying the cost by a cost
function could have a spreading effect, and then we tried to force this spreading effect. We
modified the way the next link was chosen. In the basic algorithm, each possible next link

has a selection value based on the probability function as discussed in previous sections.

In the enhanced algorithm, this selection value will be multiplied by a factor. This factor
favours a link if it has a lower occupancy than the other possible next links (the factor has
to be greater than 1 in that case). Conversely, it lowers the likelihood of selection if that
link has a higher occupancy (the factor has to be lower than 1 in that case). We use an

exponential function whose exponent is the difference of the occupancy of the current link

183

SynthECA agents for Management and Control in Networks

M5 -07) (12-0.7) 0.7
. < - T T
Line 2 (50%) factor; = ¢ -e =e

(0.7 -05) (N2-40.5) o.1
L T

]
(1]

Inooming Line factor; = e .e

(07 -12) (U5-0.2) as
T T

factor; = e .e =e

FIGURE 43. Example Factor Calculation
Line 3 (20%)

with the occupancy of all the other candidates.

The forcing factor is given by the equation above. As can be seen from the functional
form, low occupancy links are exponentially favoured over high occupancy links. Figure
43 demonstrates the calculation of the factor for an example node. It can easily be seen

that Line 3 with 20% has the best factor, whereas Line 1 has the worst, as expected.

In the experiments with this factor, the results of all cost functions were improved, but
the ranking was different: for low occupancy, the non-linear cost function was better than
the linear function. The quartic cost function was still the best for higher occupancy
values. As a result of these experiments we were not sure that such an improvement for the

standard deviation was worth it if the total cost was too high, or the time needed too large.

In order to assess the utility of the forcing factor, a number of experiments using the
network in Figure 41 were performed. T was varied in these experiments, so we defined a
total gain, taking into account the gain for the standard deviation, the total cost, and the
time needed for the connection emergence. This is shown in Figure 44.

In the total gain term, the gain for time is divided by 4 because this parameter seemed to

184

SynthECA agents for Management and Control in Networks

us less relevant than the cost and the standard deviation of occupancy.

The choice of the reference is highly significant for each gain. In order to be able to
compare all four cost functions with different values for T, we selected the results of an
experiment without factor effect, using the defaultCostFunction as cost function for the

reference gain measure.

. SD
Gaingp = l——SDRcr

R Time
Gaintime = 1= fig—

. Cost
Galnc‘,sl = l—CT[RCf

. . GainTime .
GainTrgy = Gaingp + —* Gaingcest

FIGURE 44. T-factor gain calculations

From all these experiments, it appeared that there would not be an obvious winner. We
can only choose the best compromise. In reality, the occupancy of network links are rather
high, the best compromise could be using quartic cost function and T=0.5. In order to
confirm that the results were not biased by the choice of the set of connections, we carried
out experiment #2 and it appeared that the same set of parameters would be the best

compromise.

Figure 45 shows the gain of each used cost function with varying values for T. From the
left to the right, there are the results of our experiments with the following initial
occupancy: 50%, 25% and 0%. The total gain is represented for each cost function

(defaultCostFunction, linear, non-linear and quartic). These values are the mean values

185

SynthECA agents for Management and Control in Networks

computed over 100 runs for each set of parameters.

AT

[———

0.4-

0.3

0.2-

0.1-

quadz
nonlinear
Tinear
default

quad2

nonlLinear

lineat
default
quad2
Tinear
default

FIGURE 45. Results for T-variation

nonlLinear

186

SynthECA agents for Management and Control in Networks

4.6 Other Algorithm Improvements

4.6.1 Sensitivity to Parameters
The algorithm is sensitive to both the agent parameters and the particular graph on

which the algorithm operates. In order to reduce this, we focused on evolving the most
important parameters (sensitivity to cost and pheromone). This was successful in reducing

the sensitivity to the size and complexity of the graph.
Other parameters that can affect the efficacy of the algorithm are:
number of agents created and frequency of agent creation

These two parameters are very sensitive to the size and complexity of the graph. By
default, 10 agents are created every 10 ‘ticks’. It is often better to create agents more
frequently, although it is not always the case that more agents lead to a better solution.
Indeed, these parameters are likely to be sensitive to more than the network; it appears that

they are sensitive to the particular connection requested too.

In order to reduce the sensitivity to these parameters, the CCMA monitors the progress
of the path finding process. It keeps statistics on two aspects of the search process: the
convergence of the process itself and the rate of pheromone density increase in the
network. The convergence of the path finding process is measured as a percentage of the
number of returned agents -- within the window stored -- that follow the same path. If this
percentage does not increase as search progresses, the number of agents being generated is
increased using a growth factor with a logarithmic characteristic. Similarly, if the density

of pheromone in the network is not increasing as measured by the returning agents, it

187

SynthECA agents for Management and Control in Networks

means that the rate of evaporation is too high. In this case, the CCMA increases the
amount of pheromone to be dropped, using a growth factor with a logarithmic

characteristic.

The actual amount of pheromone dropped by an agent is this amount divided by a
measure of how good the found route was (i.e., some function of it’s cost). Therefore, this
parameter is sensitive to the cost distribution on the graph, and is related to the ‘Orders of

Magnitude’ problem, below.
agent return buffer size (n)
agent percentage required for emergence (m)

Deciding whether a path has emerged is a difficult problem. In the research reported
here, it is particularly difficult as, from the outset, we decided to avoid using a global
monitor. Therefore, one of the nodes (the designated source node) was responsible for

determining whether a path had emerged, this being the responsibility of the CCMA.

We used a simple scheme: of the last n agents to return, m followed the same route. This
mechanism works reliably as a tool for detecting emergence. However, where there are
several similar solutions to a problem, it takes a long time for one to dominate over

another (it tends to oscillate).

A refinement of this emergence criterion analyzed the amount of the graph that has been
explored. This is done by recording the number of distinct routes that the agents find. As

the search stagnates, fewer new paths are found (i.e., the standard deviation of the set of

188

SynthECA agents for Management and Control in Networks

routes found approaches zero), we assume that no more new paths will be found, and then
choose the current best available solution. Therefore, these parameters are not a particular
problem. Another variation on this refinement was to sort the returning agents according
to the cost of the path found, placing agent paths into buckets of a known width. When the
threshold percentage (m returning agents of the last n) are placed into the same bucket, the

path is said to have emerged.

4.6.2 Orders of Magnitude
There are two parts to this problem: cost magnitudes and pheromone magnitudes.

Consider the following. Link AB has a cost of 1, while link AC has a cost of 100. This
leads to the situation where AC is significantly less likely to be chosen than AB. It can be
argued that this is exactly the desired behaviour. However, without careful consideration
of relative costs on the network, this can lead to poor utilization of resources. Therefore,
we recommend that costs on links be kept within one order of magnitude, as this will
ensure good searching of the network. This may require a level of normalization before
using the algorithm. Should this approach be deployed in networks we would expect

vendor agreement such that this problem be avoided.

The other magnitude problem is to do with pheromone. When a large number of agents
follow a particular route, a very large amount of pheromone can build up on that path.
Indeed, the amount can be so great that it is impossible for the agents to escape that path.
This problem is more significant than the cost magnitude problem, as it becomes very

problematic on a network where connections come and go, freeing bandwidth on other

189

SynthECA agents for Management and Control in Networks

links. When the agents become locked into a route due to a high amount of pheromone,
and another, far better route becomes available, the agents will never find that route. A

solution to this problem is to ensure that the concentration of particular chemicals is

bounded.

The use of a genetic algorithm allied to a simplified Q-learning mechanism served to
avoid some of this, as it allows for trails with large quantities of pheromone to be ignored
by using a repulsive term in the MDF. However, even with adaptive coefficients it
algorithm can still become locked prematurely into solutions. This is a classic problem of

exploitation versus exploration that is present in all search algorithms.

4.6.3 Complexity
The algorithm described here has yet to be analyzed mathematically and is beyond the

scope of this thesis. It is complex and will, in all liklihood, require techniques from
Statistical Mechanics to prove convergence. However, Dorigo’s work with the Ant System
has clearly shown that the technique scales to large problems -- in the 1000’s — which is
large for a network of the type considered here. The number of possible paths in a network
scales exponentially with increasing number of network nodes and so it is important that
the search be efficient. We are confident that Ant Search results will transfer to the routing

problem described here.

4.7 Application Oriented Routing

The statistical properties associated with applications using the resources of a network

have natural synergies when considering measured quality of service. However, it is

190

SynthECA agents for Management and Control in Networks

difficult to know in advance which applications will benefit from resource sharing. This
section introduces the concept of application oriented routing, an approach to routing
where routing agents learn to collaborate in order to optimize the quality of service
experienced by applications sharing network resources. The section proposes a multi-
swarm problem solving architecture as described in this chapter and based upon
SynthECA principles, with individual swarms responsible for determining network
connections and learning to collaborate using a coevolutionary process as a consequence

of monitoring the quality of service of the resulting connections.

4.7.1 The Model
The model for collaboration between applications for the purpose of improved quality of

service draws its inspiration from the agent architecture described in previous chapter and

its application in the previous section.

In the agent-oriented model of [White 98a], [White 98c] and restricting the discussion to
point-to-point connections only, ant-like agents drop pheromones which mark the route
from source to destination. Pheromones are represented as strings with each bit position
consisting of a symbol from the alphabet {1,0,#}, the hash symbol matching both 1 and O.
All pheromone bit strings are of the same length. No significance is associated with
particular bit patterns, agents are unable to infer, for example, the destination of a routing
agent from the pheromone that it uses. The quantity of pheromone dropped is a function of
the cost of the route; the shorter the route, the greater the quantity of pheromone dropped.

Successive agents reinforce low cost routes from source to destination by using an MDF

191

SynthECA agents for Management and Control in Networks

FIGURE 46. Example Network Fragment

as shown in equations 8-11. In this investigation, a single pheromone was used for route
finding; i.e., r equals 1 in equations 10 and 1. A static agent resident on the connection
source node monitors the progress of the routing activity and decides when a path has
emerged, subsequently sending out an allocator agent to reserve resources in the network
when emerged. The nodes and links -~ the resources used by the connection —~ are then
remembered; this being equivalent to the knowledge of the service dependency model

described in [White 98b] and which is the subject of the next chapter.

Collaboration in our model is achieved by having routing agents sense each others’
pheromones. In this way, pheromones dropped by explorer agents associated with one
connection will be sensed by explorer agents associated with another connection, the net
effect being for the two agents to collaborate in routing; i.e., there will be a tendency for

them to share parts of their routes. Sensing of each others’ pheromones is straightforward
owing to the presence of a the # symbol in the pheromone encoding[, and uses the
standard classifier template matching technique implicit in the Binary Chemistry of Order

N.

I. Remember, we are using the Binary Chemistry.

192

SynthECA agents for Management and Control in Networks

Referring to Figure 46, which represents a small part of a much lamger network, two

circuits are defined, one from A to E and one from B to D. The labels, b;, represent the

encoding of the pheromones used to find a path from source to destimation.We call this
encoding the connection encoding, CE. The label b; is all we know abo-ut the application.
Hence, in Figure 46, we see that the path from A to E uses the edges A-C and C-E, and the
nodes A,C,E. Similarly, the path from B to D uses the edges B-C and C-D, along with
nodes B,C and D. The connection monitoring agent sent from A to E ~would return with
information regarding the service dependency model for the conmection A-D that

impinges upon it. Note, that the pattern by, cannot be used to infer that thae connection B-D

has D as its endpoint.

Once the connection has been created; i.e., a circuit has been sest up, the set of
pheromones sensed during the exploration phase is noted. We call this the collaboration
set, CS. The end to end quality of service (QoS) is then monitored contirmuously by a static
QoS agent resident on the source node. The average quality of service experienced during
the lifetime of the call is considered to be a measure of the fitness as:sociated with the

circuit.

When a significant change in measured QoS is observed, a circuit meonitoring agent is
sent out to traverse the nodes and links used by that circuit. It remembers the connections
that are using the resource for each node and link; i.e. the pheromones for circuits that are
currently active. This set we call the notification set, NS. Upon return to the source node,

the set CS is compared with NS in order to observe differences. Typically, notification

193

SynthECA agents for Management and Control in Networks

occurs as a result of connection setup or tear down. In both situations the sets differ by a

single encoding. We call this encoding the notification encoding, NE.

Using this information, if the QoS has increased, we decrease the hamming distance
between the CE and NE encodings by applying the rules for each bit in the encoding using

the transformation rules in Table 13.

TABLE 13. Increasing QoS transformation rules

CE NE CE transformed Probability
0 1 # Pioi
0 1-pyoi
| 0 # Pori
1 t-pori
1 # i Pi#i
1-pra
1 1 P#1i
1-pgy;
0 # 0 Posi
1-Po#i
0 0 Pxoi
1-pyoi
I Pasli
0 P##0i
L-Pus1i-Pasoi

If the QoS has decreased, we first determine the minimum covering encoding, MCE, for
the collaboration set, CS. The MCE is the least general unifier for the set of encodings in

CS. Having computed the MCE, we increase the hamming distance between the CE and

194

SynthECA agents for Management and Control in Networks

NE encodings using the transformation rules in Table 14. We define the generality of an

TABLE 14. Decreasing QoS transformation rules

MCE NE CE transformed | Probability
0 1 0 1
i 0 1 1
1 # l I
1 0 P#1d
1-ps14q
0 # 0 I
0 1 Puod
L-prog
1 Pi#1d
0 Pa#od
1-Pys1d-Prrod

encoding to be the number of hash symbols it contains. If the generality of the MCE is
zero, the above table implies that no transformation can occur as all probabilities
associated with 1 or 0 are 1. In this situation we compute the bit position within the MCE
encoding whose value we are least certain of and transform that. We do this with

probability pr. In the situation where multiple encoding positions have equally uncertain

values, we choose randomly between them.

4.8 Experimental Setup

Two graphs were used during experimental investigation of the model described in the
previous section These are shown in Figure 41 and in Figure 42. The numbers associated
with the edges in these networks represent the costs of the edges at zero edge utilization.

Each edge had a capacity of 63 units. The network nodes and links were totally reliable

195

SynthECA agents for Management and Control in Networks

and never failed or exhibited degraded performance.

For the point to point path finding scenario, ten randomly generated traffic profiles were
created for all source-destination pairs with bandwidth requirements sampled uniformly
from the set {0, 2, 4, 6, 8, 10} bandwidth units. A bandwidth requirement of zero units
was taken to mean that no path need be calculated for the source-destination pair. Paths
were calculated using the ASGA algorithm [White 98c], with the utilization of the
network increasing by the bandwidth requirements of the traffic as paths emerged. All
paths were computed in parallel. Initial network edge utilizations of 0%, and a constant
cost function were used. A constant cost model was used in order to remove the effects of
congestion on routing. Only the capacity limits of the edges were considered as
constraints. Although unrealistic in actual networks, our desire in this investigation was to
determine whether collaboration would naturally emerge and, most importantly, facilitate
higher average network QoS when compared to no collaboration. Four bits were used to

encode the routing pheromone.

A population size of 50 was used with path emergence considered to have occurred

when 90% of the population follow a given path. A maximum of 100 cycles (or
generations) of the ASGA algorithm was allowed before path calculations were stopped

and 20 agents per cycle were sent out into the network for path finding. The value of oy
was allowed to vary in the range -0.25 to 3 and the value of B, was allowed to vary in the
range -0.125 to 1.5. A total of 8 bits was allowed for the encoding of oy and also for . A

value of 10 was chosen for Q. An indirect representation was used with mapping of bit

196

SynthECA agents for Management and Control in Networks

strings into floating point values in the above ranges in such a way as to cover the ranges
uniformly. Values of 0.8 and 0.01 were used for the probabilities of crossover and
mutation respectively. Two-point crossover was used as the crossover operator as it was
found to be slightly superior to the one point crossover used in previous experiments. The

values of the probabilities in Table 13 and Table 14 were set to 0.2. The value of ps was set

to 0.5.

4.8.1 Results and Discussion
Results for three typical runs of the system are shown in Figures 47, 48 and 49. Each

chart consists of two curves. The raw time series, with each data point marked, is
displayed along with a log fit to the data. Each graph clearly shows the overall
improvement in time of the average network quality of service. While periods of declining
average QoS can be seen -- most strikingly in example 3 - the overall trend is for

improvement over time.

Analysis of the experimental data reveals that temporary declines in QoS occur as a
result of two major factors. The first is the over generalization in application

collaboration. In other words, applications associate with too many other applications too

197

SynthECA agents for Management and Control in Networks

Average Qos

ReoR TRy

£ T g

Generations

FIGURE 47. Average Qos Example 1

early in the adaptive process. The second effect is the problem of decreasing QoS in the

situation when the generality of the MCE is zero. In this case, we tend to force

Average QoS

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Qos

Generations

FIGURE 48. Average Qos Example 2
198

SynthECA agents for Management and Control in Networks

Average Qos

0.06

7))
o 0.04
O

l

0.02

e

s 5 o L ki ot G -
R I I I O L L L L L e e IR

-— «© (o] ~— © ~— ©
~— Q| Al (o (ap)

Generations

-~
v

-~
~—

FIGURE 49. Average Qos Example 3

applications which would have collaborated to no longer collaborate.

The experimental results presented have demonstrated that learning to exploit
application synergy can improve average network quality of service. However,
considerable experimental work remains in order to demonstrate conclusively that this
approach would be viable for a real network. In particular, an exhaustive experimental
analysis of how the probability assignments in Tables 13 and 14 affect the performance of
the system needs to be undertaken. The model proposed represents one example of how
we may learn synergies between applications. Equally importantly, but as yet untried, is
the problem of learning anti-synergies; i.e., learning which applications should avoid each
other. In fact, this system represents a special class of a more general class of
coevolutionary systems where the agents have an MDF that contains terms for

collaboration neutral, collaborative and anti-collaborative behavior. In these more general

199

SynthECA agents for Management and Control in Networks

FIGURE 50. Example of Multi-priority Routing

systems, equation 10 would be the product of three pheromone and one cost terms. The
three pheromone terms would represent collaboration neutral, collaborative and anti-
collaborative behavior. The oy, terms for collaboration and collaboration neutral terms
would be negative, and the anti-collaboration term positive. We believe that identification
of these three forms of behavior, with individual sensitivity coefficients, will improve the

performance of the system.

4.9 Multi-priority Routing

In many networks we would like to route application traffic with varying priorities. In
the model proposed here, the idea is to move existing traffic to longer (as measured by the
link costs) routes when a higher priority connection request enters the system. Consider,

for example, the scenario as represented in Figure 50. Here, two routes have already been

200

SynthECA agents for Management and Control in Networks

computed: AB and CD. These are indicated with the dark arrows. A new connection
request now enters the system (FG) as shown by the white arrow. The idea, then, is to have
the AB and CD explorer agents (which continue to explore the network even after route
allocation) to recognize that the environment has changed and to deallocate the existing
route and find one that avoids the higher priority traffic. However, having said this, we
want to provide this functionality by using the same stigmergic principles detailed in the

previous sections.

Considering only the higher priority connection finding algorithm for a moment, this

may be achieved in a number of ways using the SynthECA architecture.

4.9.1 Adding a Priority Pheromone
In this approach, the explorer algorithm proceeds as before, with one modification. The

MDF of the explorer agent does not sense the lower priority connection pheromones but
has two receptors instead of one used in the basic routing system. In fact, we use a two
class pheromone system. The first class of pheromones has the same meaning as in the
earlier sections of this chapter, i.e., it is a member of the Binary Array Chemistry of order

N. The second class of pheromones is a different length chemical, i.e., it is a member of

the Binary Array Chemistry of order NP, where N” # N . In this way, the utilization (and
therefore the cost) of a link appears lower to a higher priority connection when compared
to a lower priority connection. This requires that chemicals have a well-defined and
standardized encoding. As before, all explorer agents find the shortest path using the

algorithms described in the previous sections and, upon path emergence, an allocator is

201

SynthECA agents for Management and Control in Networks

sent out to allocate resources in the network. The allocator differs here from the previous
design. In a multi-priority system, the allocator deposits pheromone on its way back from
the destination having allocated resources for the connection. The reason for the allocator
depositing pheromone on its way back from the destination is that we want to ensure that
resources have been allocated before communicating the existence of the new connection
to other connections in the network. The allocation pheromone, or a-chemical, is sensed
by lower priority connection explorer agents. Upon return of the allocation agent, the
lower priority explorer agents, or Ip explorers as we shall refer to them, begin to
experience higher costs for links on their paths that have had resources allocated for the
higher priority connection. With the added costs, Ip explorers will deposit smaller
quantities of their connection pheromones, indicating a reduced confidence in the path. If
confidence in the path is sufficiently reduced, i.e., it is no longer the shortest path, the
majority of Ip explorers will begin to follow the new shortest path. At this point, the
CCMA will send out an allocation agent for the new shortest path and a deallocation agent
for the old shortest path. Hence, the higher priority connection has forced the movement

of lower priority connections off of its path.
The above is probably best illustrated with an example. Consider again the network and
connections shown in Figure 50. Let the order of the connection and priority chemistries

be 8 and 4 respectively. The latter implies that 4 priority levels exist!. Let all edges in the

network have unity cost, i.e., C;;(u) = 1, except edges FD and GH which have Cjj(u) = 2.

1. The receptors sensing the priority-related chemicals will sense only the priorities above them. Hence a priority 1
receptor will be of the form: 1###, while priority 4 will have the form 1111. Hence priority | receptors will sense pri-
ority 4 traffic, and is thus considered low priority traffic.

202

SynthECA agents for Management and Control in Networks

The paths indicated by dark arrows for connections AB and CD are then the shortest paths
and will be found by explorer agents. Now, consider the introduction of the high priority
connection FG. The shortest path for this connection is FE-EB-BG. Assuming that the
allocator for this connection drops 3 units of the a-chemical, Ip explorer agents for the AB
connection will begin to experience higher costs for the AE-EB path, now 4, which makes
the path longer than the shortest path, now AE-ED-DB with cost 3. After some time, the
CCMA agent for the AB connection will observe that the majority of its explorer agents
follow the new shortest path and will send deallocation and allocation agents out into the

network in order to move the connection to the new shortest path.

Obviously, the above example has been constructed to demonstrate the path moving
algorithm. However, it is sensitive to the quantity of a-chemical deposited in the network
by the allocator agent for the higher priority connection. If the concentration of a-chemical
is too low, the lower priority connections sharing links with the high priority connection
will not be forced to move. This limitation can be overcome by having the CCMA monitor
the quality of service associated with the connection. If the measured quality of service
falls below the required service level agreement, an agent is sent out into the network that
deposits higher concentrations of the a-chemical, thereby increasing the effective cost of

the links as seen by the lp explorer agents.

Returning to the above example, assume that the high priority connection allocation
agent deposited only 1 unit of the a-chemical. In this case, the cost of the path for the AB

connection does not appear to change, and no re-routing occurs. The CCMA for the high

203

SynthECA agents for Management and Control in Networks

priority question, seeing its quality of service to be below the agreed value, sends an agent
out into the network to deposit a further quantity of the a-chemical, say 2 units. The rate of
increase of a-chemical concentration achieved by sending out multiple agents that deposit

a-chemical we call the priority momentum factor.

At this point, the quantity of a-chemical on the high priority connection links is 3, as
before, and re-routing consequently takes place. With a lower priority momentum factor
the required number of agents depositing a-chemical to achieve re-routing will be higher,
but re-routing will inevitably occur when the route is made “expensive enough” as seen by

the Ip explorer agents.

4.9.2 Using Pheromone Decomposition
In this approach -- inspired by the parasitic behaviour of certain species of ant -- the high

priority connection explorer agents decompose the routing pheromones that they
encounter on links that they traverse. As before, explorer agents compute shortest path
routes through the network using the algorithms previously described. However, after
allocating resources for the route which emerges, post-allocation explorers have an
chemistry enhanced with a type 2 reaction. A type 2 reaction is a catalytic decomposition
reaction, X + Y — Y. These modified explorer agents decompose the routing pheromones
associated with lower priority connections. In order to do this, a substring of the encoding
used must be allocated to priority. It is equivalent to “gluing together” the two chemicals
proposed in the approach described in the previous section. Using the encoding examples

of the previous section, we could use (8+4) 12 bits for a routing pheromone, where the last

204

SynthECA agents for Management and Control in Networks

four bits would be the priority bits. In this case, a priority 4 connection would possess a
receptor for the encoding ##HHHHHHHHHEL, thereby being able to sense all class 1, 2 and 3
routing pheromones. Note that encodings for a particular priority class have a zero in the
appropriate position in order to avoid the decomposition of the self chemical. The self
chemical, i.e., the connection’s own routing pheromone, is the catalyst. The importance of
the catalyst here is the higher the concentration of it, the more it decomposes of the lower
priority non-self routing chemicals. Thus, on links used by the high priority connection,
decomposition will occur at a higher rate. By coupling the decomposition rate to the

concentration of self, off-path links are affected to a lesser extent than on-path links.

As with the previously described approach, the sensitivity to individual parameters may
meet that re-routing of lower priority traffic does not occur quickly. The solution, once
again, is to employ a momentum term. If, after a number of post-allocation agents have
been sent out, the measured quality of service is still below that specified in a service level
agreement, the rate of decomposition of non-self routing chemicals is increased.
Ultimately, with this mechanism, the increasing differential decomposition rates between

the on- and off-path links will cause re-routing of the lower priority traffic.

4.10 Using SynthECA Routing Agents on Real Networks

There are two primary mechanisms for utilizing this approach on a real ATM network or
transmission network: finding routes on the network itself, and finding routes in the
management system. The algorithm appears to work best on networks where connections

are relatively long lived; i.e., computing permanent virtual circuits rather than switched

205

SynthECA agents for Management and Control in Networks

virtual circuits.

4.10.1 SynthECA in the Network
For the algorithm to be able to operate on a real network, several mechanisms must be

available:

A method of assigning source and destination nodes and informing those nodes of their

status (probably via a management system or an embedded communications channel).

A method of packaging agents, their execution state and their data so that they can be
transported across a link (c.f. mobile agents in Grasshopper [Grasshopper] or the
framework designed here in the Systems and Computer Engineering Department of

Carleton University [Susilo 971).

On each node, a computing platform and a method for providing information about

connected links to the agents.

For each link (probably recorded at each end node) a mechanism for recording

pheromone concentrations for each species and evaporating this over time!.

On the source node, a computing platform, the CCMA, must be present in order to

determine whether a route has emerged.

All of the above points can be addressed with the application of Java, a mobile agent
framework and the use of many of the Virtual Managed Component (VMC) ideas found in

[Bieszczad 98], [Susilo 97], [Pagurek 00] and [Schramm 98]. The extensions to the

. Alternatively. evaporator agents could circulate and reduce the pheromone concentrations.

206

SynthECA agents for Management and Control in Networks

Carleton University mobile agent toolkit described in Section 3.7 provide a potential
solution to the problem of recording pheromone concentrations and communicating them

to interested agents.

Besides these requirements, some consideration must be given to the amount of
bandwidth taken up by these agents. The agents themselves are relatively small, although
there may be a large number of them circulating in the network at any time. Whether code
is transferred with each and every agent or resides on the nodes is a matter or engineering.
The former approach avoids the problem of agent code upgrade (a problem discussed at
length in chapter 6) while the latter approach reduces the network bandwith consumed by
the mobile agent. An intermediate solution is possible wherein the code resident on the
node is considered cached and forgotten after a period of time. There may also be many
connection requests being satisfied concurrently. The amount of bandwidth available in

the network is likely to be several orders of magnitude higher than the total bandwidth

available, and so in many situations, these concerns are probably unfounded'.

However, when the network utilization is approaching its capacity, sending many agents
may be deemed impractical, as it eats up too much bandwidth which could be more
productively used. From the previous sections, it is clear that the real benefits of the
algorithm show when the network is approaching its capacity, and therefore it is valuable

to retain the algorithm.

A compromise is to assign a small amount of bandwidth on each link permanently to the

1. For example. channels in Wavelength Division Multiplexed (WDM) networks are 2.5Gb/sec.

207

SynthECA agents for Management and Control in Networks

algorithm that will make best use of it, i.e., define an embedded management
communications channel. Furthermore, when the network has sufficient capacity, the
algorithm can make use of an additional amount to maximize its performance. If the
network operator decides to use the final 0.01 percent of the bandwidth for network traffic,
the swarm algorithm can be suspended and the management channel given over to

network traffic.

A further benefit of having agents roaming the network is that they can gather
transmission delay and cell loss information. This can be fed back to the management

system, as statistics about how well the algorithm and network are operating.

4.10.2 SynthECA in the Management System
While the previous section has suggested employing SynthECA agents directly in the

network, another approach is running the ASGA algorithm on the management system
using snapshots either of the network, or by querying the nodes for information (although
the latter is likely to be unacceptable). We can view the network snapshots as a simulation
of the network. Network snapshots can be obtained using standard graph algorithms such

as depth first search, for example.

This method is analogous to the simulator already implemented, in that the agents
operate on a model of the actual network. However, as we deal with snapshots, it is
possible that some information will be incorrect. The allocator agent must be analyzed and
time dependencies between allocating on the network model and allocating real

bandwidth on the actual network must be reduced. We would expect that a network view

208

SynthECA agents for Management and Control in Networks

would only be required for replanning of the network using techniques described in
[White 99a].

This latter point raises the issue of the integration between the algorithm, the
management system and the network. The algorithm results must be close enough to the
real network in order for the solutions to be valid for any length of time on the real
network. It is iclearly not desirable to work on an out-of-date network model, nor is it for

allocation to be attempted when the real network says that it is not possible.

4.11 Summary

This chapter has shown that this multi-agent search technique, called Swarm

Intelligence, embodied in SynthECA agents, can solve routing problems on networks.

The main strengths of the algorithm are its robustness, the simple nature of the agents,
and that it continues searching for new solutions even if a very good one was found. The
algorithm also appears to perform well in problems with a large graph. It should also be
noted that Dorigo’s work on TSP has indicated that the AS is insensitive to the parameter
settings of the system. While the system described here is different in detail to Dorigo’s,

we have experienced the same insensitivity with respect to parameter settings.

In an enhancement of the routing algorithm, we were able to obtain a load-balancing
algorithm. All our experiments were on general graphs, therefore this kind of heuristic
could be used as a general purpose tool (c.f. Dorigo’s application of the same algorithm to

the TSP, QAP, JSP with minimal changes).

The Swarm Intelligence dynamic routing algorithm showed strengths of versatility and
209

SynthECA agents for Management and Control in Networks

generality. For example, adding multiple priority levels to the algorithm proved
straightforward. These can also be weaknesses: some other very specialized algorithms
can outperform this algorithm. Its real strength is in the way it can adapt to new situations.
Real ants are able to quickly find a new path when their environment changes, and the
swarm algorithm also exhibits this behaviour. For instance, it can be shown that the
explorer agents react quickly to changes in available bandwidth (and hence cost) by
avoiding a particular link. This kind of heuristic would be very relevant in cases where the
“environment” is changing rapidly, with a large flow of data. This is the case for problems

like air traffic management [Ndovie 94].

Adaptive behaviour could be used in managing incidents, network failures or networks
with rapidly changing topologies[. The fact that it can adapt to totally new situations may
be very useful. This way, during the failure of some of its physical elements, a network
would be able to manage routing. It is interesting too, that the agents can behave and act
without human intervention. During network failures, this algorithm could behave as the
“immune system” of the network and insure that during incident the routing of data would

still be done.

The interaction of a diagnostic agent swarm and the routing swarms as detailed in this

chapter are the subject of the next.

. Such topologies are found in satellite networks and low power radio networks such as those proposed for home use.
See, for example, [Biuetooth 99].

210

CHAPTER 5 Distributed Fault Location Using
SynthECA Agents

5.1 Overview

This chapter describes how multiple interacting swarms of adaptive mobile agents can
be used to locate faults in networks. The chapter proposes the use of distributed problem
solving using learning mobile agents for fault finding. The chapter uses the SynthECA
architectural deescription for an agent that is biologically inspired and proposes chemical
interaction as the principal mechanism for inter-swarm communication. Agents have
behavior that &s inspired by the foraging activities of ants, with each agent capable of
simple actions; global knowledge is not assumed. The creation of chemical trails is
proposed as the primary mechanism used in distributed problem solving arising from the
self-organization of swarms of agents. Fault location is achieved as a consequence of
agents moving through the network, sensing, acting upon sensed information, and
subsequently modifying the chemical environment that they inhabit. Elements of a mobile
code framework that is being used to support this research, and the migration mechanisms

used for agent mmobility within the network environment, are described.

211

Distributed Fault Location Using SynthECA Agents

5.2 Introduction

The telecommunication networks that are in service today are usually conglomerates of
heterogeneous, very often incompatible, multi-vendor environments. Management of such
networks is a nightmare for a network operator who has to deal with the proliferation of
human-machine interfaces and interoperability problems. Network management is
operator-intensive with many tasks that need considerable human involvement; fault
diagnosis being one of the most important. Legacy network management systems are very
strongly rooted in the client/server model of distributed systems. This model applies to
both IETF [Case 90] and OSI [Yemini 91] standards. In the client/server model, there are
many agents providing access to network components and considerably fewer managers
that communicate with the agents using specialized protocols such as SNMP or CMIP.
The agents are providers (servers) of data to analyzing facilities centered on managers.
Very often, a manager has to access several agents before any intelligent conclusions can
be inferred and presented to human operators. The process often involves substantial data
transmission between manager and agent that can add a considerable strain on the
throughput of the network. The concept of delegation of authority has been proposed
[Yemini 91] to address this issue. Delegation techniques require an appropriate
infrastructure that provides a homogeneous execution environment for delegated tasks.
One approach to the problem is SNMPscript [Case 93]. However, SNMPscript has serious
restrictions related to its limited expression as a programming language and to the limited
area of its applicability (SNMP only). Although delegation is quite a general idea, the

static nature of management agents still leaves considerable control responsibility in the

212

Distributed Fault Location Using SynthECA Agents

domain of the manager and generally implies the availability of an accurate global view of
the network. Legacy network management systems tend to be monolithic, making them
hard to maintain and requiring substantial software and hardware computing resources.
Such systems also experience problems with the synchronization of their databases and
the actual state of the network; i.e, the network view is generally out of date. Although the
synchronization problem can (potentially) be reduced in severity by increasing the
frequency of updates or polling, this can only be achieved with further severe

consequences on the performance of the system and the network.

An emerging technology that provides the basis for addressing problems with legacy
management systems is network computing based on Java. Java can be considered a
technology rather than merely as another programming language as a result of its
standard’ implementation that includes a rich class hierarchy for communication in TCP/
IP networks and a network management infrastructure -- the Java Management
Application Programmer Interface, (JMAPI). Java incorporates facilities to implement
innovative management techniques based on mobile code [Bieszczad 98]. Using this
technology and these techniques it is possible to address many interoperability issues and
thereby work towards plug-and-play networks by applying autonomous mobile agents that
can take care of many aspects of configuring and maintaining networks. For example,
code distribution and extensibility techniques keep the maintainability of networks and
their management facilities under control. The data throughput problem can be addressed
by delegation of authority from managers to mobile agents (or code, we use the terms

interchangeably) where these agents are able to analyze data locally without the need for

213

Distributed Fault Location Using SynthECA Agents

any transmission to a central manager. We can limit the use of processing resources on
network components through adaptive, periodic execution of certain tasks by visiting
agents. The goal is to reduce, and ultimately remove, the need for transmission of a large
number of alarms from the network to a central network manager. In other words, our
research focuses on proactive rather than reactive management of the network. In
particular, this chapter focusses on an important facet of Network Management; namely,

the location and diagnosis of faults in the network.

While Java technology provides a device independent agent execution environment, the
use of mobile code in Network Management and the use of groups of agents in particular,
generate a number of issues which must be addressed. First, how is communication
between agents achieved? Second what principles guide the migration patterns of agents
or groups of agents moving in the network. Finally, how are groups of agents organized in
order to solve network-related problems? These questions motivate the research reported

in this chapter; the answers being provided by the use of SynthECA agents.

The remainder of this chapter is organized in the following way. The concept of a
service dependency model is first introduced. Second, we briefly describe extensions to
the mobile code infrastructure described in Section 2.2.4 on page 33 that facilitate device
management. A SynthECA agent architecture utilizing mobile code for network
management is subsequently introduced and briefly described. Following this
introduction, algorithms for the localization of network faults are then provided, along

with an exploration of their characteristics in a number of network scenarios.

214

Distributed Fault Location Using SynthECA Agents

5.3 Service Dependency Modeling

In order to drive the problem solving process — that of fault location -- a model of faults,
or a concept of services and dependencies between them, is required. However, it is our

goal to have the fault model learned rather than provided to the system by an operator.

Within the context of this chapter, a network is said to provide services; e.g., private
virtual circuits (PVCs). When a service is instantiated; e.g., a new PVC is created, it
consumes resources in that network and subsequently depends upon the continued
operation of those resources in order for the service to be viable. From a fault finding

perspective, a service can then be defined in the following way:
Sao {(R,p)}
where § is the service, R; is the ith resource used in the service, p; is the probability with

which the i resource is used by that service and the relational operator means depends

upon. A resource R; might be a node, link or other service.

FIGURE 51. An example virtual network

215

Distributed Fault Location Using SynthECA Agents

For example, a PVC that spans part of a network might depend upon the operation of
several nodes and T1 links. The links, in turn, might depend upon the correct operation of
several T3 links that carry them in a multi-layer virtual network. An example of such

dependencies is shown in Figure 51.

Three layers within a multi-layer virtual network are partially represented in the figure
on the previous page. The link ae represents a PVC. This link depends upon links in the
layer that supports it, in this case the T1 layer represented by links ac and ce. These links,
in turn, depend upon links in the T3 layer. In the case of link ac, its dependencies include
links ab and bc. The link ce depends upon the T3 links c¢d and ce for its operational

definition. An agent-oriented solution to the PVC configuration problem can be found in

[Pagurek 98] and [Boyer 99].

5.4 Agent System Architecture

In the system described here, SynthECA agents solve problems by moving over the
nodes and links in a network and interacting with “chemical messages” deposited in that
network. These messages are stored within VMCs and are the principal medium of
communication used between both swarms and individual swarm agents. Chemical
messages are used for communication rather than raw operational measurements from the
network in order to provide a clean separation of measurement from reasoning. In this
way, fault finding in a heterogeneous network environment is more easily supported. Also,
chemical messages drive the migration patterns of agents, the messages intended to lead

agents to areas of the network that may require attention. As we shall see later, this system

216

Distributed Fault Location Using SynthECA Agents

can be thought of as sitting on top of the routing system described in the previous chapter

and represented by Figure 25 on page 108.

5.4.1 Agent Classes
The agent classes defined in the system described here are intended to implement an

active diagnosis system [Ishida 96]. In active diagnosis systems, monitoring and
diagnostic activity is undertaken by agents working in a distributed &1anner In a sensor
network. The agents perform these activities on a timely basis rather than just when a fault
is detected. Ishida also describes an immunity-based agent approach to active diagnosis
that exploits the metaphor of an immune system for active diagnosis. In some sense, a
fault finding system can be thought of as an immune system and agent classes as examples
of B-cells and T-cells. In fact, SynthECA agents are characterized by the cellular metaphor
rather closely as they consist of chemical reactions encapsulated within a cell membrane

that consists of effectors and receptors.

The agent system described here consists of four agent classes. First, condition sensor
agents (CSAs) are defined. A CSA is an example of a netlet [Bieszczad 98]. The function
of a CSA [Schramm 98] is to measure one or more parameters associated with a given
component and determine whether a specific condition is true or false. CSAs interact with
VMCs on network components by measuring parameters associated with the network
component; e.g. the utilization of links connected to the node or the utilization of the node
itself. CSAs are adaptive and learn to (a) avoid components where no valid sensory

information is available and (b) visit components more frequently that are likely to cause

217

Distributed Fault Location Using SynthECA Agents

the condition of interest to evaluate to true. While the first situation appears strange at first

reading, it must be noted that we are dealing with heterogeneous networks where

1
parameters supported by one vendor may not be supported or provided by another .

Therefore, it is likely that CSAs will be vendor specific or apply to a subset of all
components in the network at best. Also, it is intended that our CSAs should be self-
configuring. Being netlets, they are injected into a mobile code region from a network
management workstation and are not directed to visit particular components. [t is
essential, therefore, that CSAs are capable of learning an applicable (to them) map of the
network. A CSA’s ability to modify the frequency with which it visits a component
facilitates variable frequency polling of components. The more the condition for a CSA
evaluates to true, the more likely the agent is to visit the component. However, we prevent
a CSA from spending all of its time on a single component. In this way, CSAs spend more
of their processing effort on components with potential performance problems rather than
allotting equal time to all components. A CSA may also leave chemical messages on
devices that it visits. In this way it is possible for two such agents, one for device type one
and the other for device type two, to measure different parameters but generate the same
chemical message for use by the fault finding agents. The separation of measurement from

reasoning is clearly an advantage here.

It is worth noting that CSAs are capable of interacting with the old manager/agent

schema for network management. This can easily be implemented using VMCs. For

L. A review of the private part of an SNMP MIB for a small number of devices confirms just how diverse devices can be.

218

Distributed Fault Location Using SynthECA Agents

example, an application that uses a local VMC and implements an SNMP protocol handler

can be installed inside the MCD. Thereafter, it can act as an SNMP agent.

Another possibility that has been implemented within the MCE is a handler of an
extension protocol [Pagurek 00]. The DPI protocol was chosen for implementation. The
DPI protocol was chosen as it is a ‘lightweight’ protocol and avoids the BER encoding/
decoding that is part of SNMP. In this research, a VMC extension registers with an SNMP
agent and, acting as an SNMP subagent, provides data in response to SNMP requests. This

scenario is shown in Figure 52.

Mobile Agent
Manager

FIGURE s2. A Sensor Agent talks to an SNMP Agent

Both of these ideas could also be applied in situations where inter-working with a legacy
system is required. It is possible to associate simulated network components with actual
devices running legacy agents through properly engineered VMCs. This might be the

situation where the actual device does not support a Java environment.

Second, Service Monitoring (SMA) and Service Change agents (SCA) are defined. A

service monitoring agent is responsible for monitoring characteristics of a set of instances

219

Distributed Fault Location Using SynthECA Agents

of a service; e.g. the quality of service on one or more PVCs. These agents are static and
reside where the service is being provided; e.g., at the source of a PVC. A service
monitoring agent knows the service dependency model for the service. This model is
computed during configuration of the service. This model, using the example of the
previous chapter, is constructed by explorer agents as they move throughout the network.
A service monitoring agent detects changes in the characteristics of the monitored service
and, if the change is considered significant, a service change agent is sent into the network
in order to mark the resources on which the service depends with a chemical message. The
concentration associated with the chemical message reflects the change in value of the
characteristic of the monitored service. If the change in the measured characteristic for the
service is considered beneficial, a negative concentration will be associated with the
chemical message; i.e., the chemical will be ‘evaporated’. If the change in the measured
characteristic for the service is considered detrimental to the service, a positive
concentration will be associated with the chemical message; i.e., an existing trail will be
reinforced or a new one created. Given that resources will be shared by multiple services,
it is easy to see that the resources common to two services will see twice the change in
chemical concentration when the SMA detects a significant change. It is this process of
chemical interference that allows localization of a fault to be inferred. A simple example
of chemical interference used for fault localization is shown in Figure 53. In this example,
a fault on node E has resulted in degraded quality of service for the two connections
present in the network. The SMAs for the two connections have detected the degraded

quality of service and sent out service change agents to mark the resources (in this case

220

Distributed Fault Location Using SynthECA Agents

FIGURE 53. Localization of a Fault by Chemical Interference

nodes and links) that might be at fault. Figure 53 shows the concentration of a chemical
message that represents the change in quality of service on the network nodes and links.
Where a node or link has no associated chemical concentration, it means that it is zero.
Figure 53 clearly shows that the highest concentration of the chemical is to be found at
node E. This hints at the problem solving mechanism; namely, hill climbing in the space

of increasing concentration of chemical associated with the fault.

Problem identification agents —- other netlets that circulate continuously throughout the
network -- use the trail of chemical messages laid down in the network in order to
determine the location of faults and to initiate diagnostic activity. These agents form the
final class of agents defined. The value of communicating problems to network operators
rather than a stream of alarms has long been understood [White 92], [White 96], [White
97]. In this previous work, a static knowledge base system has been developed where the

knowledge base is composed of a set of problem classes with communication by

22]

Distributed Fault Location Using SynthECA Agents

messaging between them. A problem class represents a model of one or more potential
faults in the network. Instances of problem classes are intended as hypotheses regarding a
fault in the network and a winner-take-all algorithm, where the instance explaining the
most alarms is considered the most likely problem, is used to discriminate between

competing hypotheses.

Mapping a single problem class to a problem agent, and using inter-agent
communication for inter-problem message passing, seems a natural progression of this
work. Rather than being alarm driven as reported in previous research, problem agents
respond to the chemical messages laid down in the network and migrate from component
to component based upon the concentrations associated with these chemical messages. In
some sense, agents move to alarms (chemical messages in the network) rather than alarms

being sent to a central manager for processing.

5.4.2 Problem solving by agents
Several problem agents have been implemented. First, a PVC Quality Of Service

problem agent (qos-agent) has been built. As indicated in the previous section, these
agents hill climb in the space of the chemical laid down by SCAs. The qos-agents circulate
continuously in the network, moving and performing diagnostic activity at various of the
nodes that they visit. At the beginning of our research, these agents would initiate
diagnostic activity on a component when a concentration threshold was reached and this
threshold implied that at least two SCAs had visited the component. This, however, has

the potential for large numbers of incorrect diagnoses and was quickly discarded as a

222

Distributed Fault Location Using SynthECA Agents

viable heuristic even though the qos-agents do eventually find the faulty component. A
variation of this simple heuristic was also tried, wherein the qos-agents adjusted their
diagnostic thresholds up and down depending upon the number of incorrect diagnoses.
While better than the simple heuristic described above by more than 50%, it was still

considered inadequate.

A much-improved solution to the problem is the introduction of reinforcement learning
techniques (see [Watkins 92], for example) to the agent architecture. A reinforcement
learner is introduced at each node in the network and implemented as part of the VMC.
The system state, I, associated with the reinforcement learner consists of the vector -- the
s-vector, or s -- of concentrations of g-chemical on the node and connecting links, the
actions, a, available to the system and the Q values associated with a vector of g-chemical
concentrations. For example, in Figure 53, the vector (2,1,0,0,1,1,1) could be used to
partially define the state of the node E and its network links. The actions available in a
given state are to diagnose a component (node or link) or not to do anything. Diagnostic
actions are also stored within the VMC [White 99d]. Action selection is based upon the Q
value associated with the g-vector. The Q value is the long term expected utility associated
with taking a particular action when in a given state and is quite different from the
concentration of the q-chemical deposited in the network. The reinforcement signal within
the system is provided by the SCAs. If the qos-agent selects the correct component for
diagnosis, the SMAs will detect the change in quality of service and send SCAs into the
network in order to modify the concentrations of g-chemical on the various nodes and

links that form part of the circuit (more generally the service dependency model). This

223

Distributed Fault Location Using SynthECA Agents

change will, in turn, be sensed by the qos-agent residing on the node where diagnostic
activity was initiated and it will increase the Q value associated with taking that action in
that state. We assume that the fault correction activity, if initiated on the correct
component, will be successful. Diagnosis is not the focus of this chapter, fault location is.
We are assuming here that if the correct component is identified, diagnosis will occur and
the fault will be corrected. This assumption implies that we are not at all interested in the
way in which a particular node provides the service being monitored; the node is a “black
box.” If an incorrect component is chosen for diagnosis, two situations are possible. First,
if we assume that diagnostic actions cannot make the quality of service of the connection
degrade further, then changes of that kind that the qos-agent sees are not as a result of its
actions. It does not use these signals to update the value associated with choosing that
diagnostic action. They are assumed to be the result of a fault elsewhere in the network.
We do not assume single faults in our system; several may be present in the network at the
same time. Second, it is possible that no improvement in quality of service is seen by the
SMAs whose circuits depend upon the component being diagnosed. In this situation, the
qos-agent “times out” and applies a negative signal (reward) to the action associated with
the initial state. It then attempts (up to) two further diagnoses before migrating to a new
node. Should one of the remaining diagnoses improve the quality of service for the circuits
depending upon the component diagnosed, the feedback is applied in a discounted fashion
to the one or two diagnoses that preceded it. This apportionment of the reinforcement

signal is done to take account of latency effects in the network.

In the equation on the next page, Q(s,a) represents the long term discounted reward for

224

Distributed Fault Location Using SynthECA Agents

an agent taking an action, a, when in state s. AQ(s,a) represents the change in the Q value

AQ(s, a)=0(r +7Y max, Q(s’, a’) — Q(s, a))

for the state, s, having taken the action a. Learning occurs through the modification of the
Q values and by choosing actions that are biased towards higher Q values. The terms o
and 7 are constants that determine the learning rate of the system. Algorithmically, Q
values are updated by taking a specific action in a given state and noting the change in the
system state. The reward, r, is the observed change in the quality of service on the
component and its associated links. Changes in quality of service are aggregated over a
time window, f,,, which is the time in which improvements in quality of service are seen,
up to a threshold value of ¢, An aggregation time window is needed in order to take
account of the latency of the network; SCAs need time to lay down changes in
concentrations of g-chemical. However, we do not wait forever as, in the case of an
incorrect diagnosis, no change will occur. During the aggregation time window, it is the
qos-agent that senses changes in the local concentration of q chemical. It is the qos-agent
that applies the aggregate q chemical concentration changes as a change in the Q value for
the state using the equation above; i.e., it is the agent that performs the feedback for the

reinforcement learning system.

If a degradation in quality of service is seen during diagnosis, a reinforcement signal is
applied to the state up to, but not including, that change. The reasoning here is that a
successful diagnosis can only improve the quality of service for everyone and that no

diagnostic activity causes quality of service to degrade further. Therefore, as soon as a

225

Distributed Fault Location Using SynthECA Agents

quality of service degradation is seen, it must be the result of a second, independent

failure.

The Qfs,a) function is stored as a lookup table with a entry for every possible state-
action pair. In this system, there are two actions associated with the node and each incident

link, the actions being to diagnose the component or do nothing. We designate these d; and

2,- for diagnosis and non-diagnosis of the ith component respectively. The table is

initialized such that for a given state, s, the function Q(s, d;) = ks; and

(s, ‘75) = z respectively. The values k£ and k are constants for the system, with k>0
+

4

and k£ > 0. This form of initialization for reinforcement learning we call Intelligent
Initialization Reinforcement Learning (IZRL). Normal initial procedures for reinforcement
learning randomly assign Q values to the various actions. [°’RL was found to be 22%
superior to this owing to the strong correlation between the concentration of q chemical
associated with the component and the expectation of diagnosis. Generally, we would
expect monotonically increasing functions for initialization of 4; and monotonically
decreasing functions for initialization of d; to provide improved algorithm performance
when compared to standard initialization. Stated more simply, we would expect high
concentrations of q chemical to be associated with a higher probability of diagnosis.
Defining dim(s) to be the dimension of s; that is, the number of components diagnosable

by the reinforcement learner, an action in any state, s, is chosen with probability, p(d;|s),

226

Distributed Fault Location Using SynthECA Agents

using the Q value associated with a given action, d; or d;, using the distribution given by:

eQ(S, dy) _1
p(dl-|s) = —
7d,‘ - ,d‘-
ZeQ(S)—dtm(s)+eQ(s)
i
_ eQ(s,Zi)
P(d,'ls) =

. d; . . d;
ZeQ(S)—dzm(s)-!—eQ(S)

13

As stated above, diagnostic actions are initiated by interaction with the component
through a VMC. When such activity is initiated, and the diagnostic activity is successful
as measured by improved quality of service, the concentration of the reliability’ chemical,
or r-chemical, is increased on the component. The amount of r-chemical deposited on the
device is proportional to the time taken to receive the positive reinforcement signal; i.e.,
the time it takes for an SCA to visit the device and change the quantity of q-chemical. The
reinforcement signal is positive if the SCA evaporates gq-chemical and negative if it
deposits g-chemical. If no signal is received within a period of time, it is assumed that an

incorrect diagnosis has occurred and a negative reinforcement signal is applied.

The migration decision function associated with qos-agents depends only upon the
quantity of g-chemical on the node and its incident links. Defining Sjjq(t) to be the
concentration of the g-chemical on the component from i to j at time t, the MDF for the

fault location agent can be written:
Siig() : i
py(t) = —H4— for f% of the time, random otherwise
D Sig(0)
k

227

Distributed Fault Location Using SynthECA Agents

Random migrations are made for (100-f)% of the time in order to ensure that the entire
network is reached in reasonable time. A probabilistic choice, based upon S values, is
made for % of the time in order to revisit parts of the network that are experiencing poor
quality of service. It should also be noted that oscillation between two high S components
is explicitly prevented; i.e., a fault location agent cannot return to a previously visited

network element for t migrations.

A Chronic Failure problem agent has been defined in the system that senses the c-
chemical for the purpose of identifying components that experience multiple faults in
short periods of time. The concentration of c-chemical is used within the migration
decision function of explorer agents to determine where new connections should be made.
In order that c-chemical concentrations do not increase unchecked, a CSA has been
included in the system that periodically visits components and ‘evaporates’ c-chemical

concentrations.

Finally, an Overload problem agent has been defined, but not implemented. This agent
hill climbs in the space of the concentration of a chemical generated by CSAs that
circulate in the network, monitoring component and link utilization parameters. Again
threshold driven, it is intended that persistently over-utilized components are identified in

order to facilitate re-planning of the network.

To summarize, SMAs detect changes in quality of service. Significant changes in quality
of server result in an SCA being sent into the network to mark components in the service

dependency model with concentrations of q-chemical. Qos-agents circulate in the

228

Distributed Fauit Location Using SynthECA Agents

network, hill climbing in the direction of increasing concentrations of g-chemical.
Probabilistically, they choose to initiate diagnostic activity on components. If a diagnosis
is correct, the SMAs will see a significant improvement in quality of service and, once
again, send SCAs out into the network in order to change the concentrations of g-
chemical. The qos-agent diagnosing the fault will sense the improvement and use it to
reinforce the Q value associated with taking that action in that state, thereby making a

correct diagnosis more likely in the future.

5.5 Results

4 n3 4
n2 / \ né
n4 3
4 /
nl 6 10 2 nsS
) \ 3
\ 10 n10 %
3 n7
7\ ’ 2 / 1
) 3
FIGURE s4. Example) all nl2

Network 1

The fault location system described briefly in the previous sections was applied to a
number of small networks, one of which is shown in Figure 54. Each component in the
network was assumed to have a prrobability of causing degraded performance of 0.1 and 5
distinct quality of service degradation levels were defined. The experimental setup and
nature of traffic patterns that were applied to this network are defined in the previous

chapter. Quality of service changes were randomly injected into the network in order to

test the response of the system. A reinforcement learner was initialized using I’RL on each

229

Distributed Fault Location Using SynthECA Agents

node such that the most likely action chosen for any state was the diagnosis of the
component associated with the highest individual component of that vector (assuming >

2).

FIGURE 55. Fitness results

The number of qos-agents was varied from 1 to 5. The reason for this is that qos-agents
acting independently can cause incorrect feedback to be seen by one another and thereby
degrade learning performance. This is the so-called Tragedy of the Commons problem
often observed in multi-agent learning systems; see [Wolpert 99] for example. While a
single qos-agent would eventually visit and diagnose the correct component, this would
lead to unacceptable fault location times in large networks. However, having too many
agents causes inferior learning performance owing to the poor nature of the reinforcement
signals. Increasing the number of qos-agents increases the probability that the successful
diagnosis by one agent will be seen as a positive reinforcement signal by another. [Wolpert

99] provides a useful analysis of the properties of a MAS with reinforcement learning that

230

Distributed Fault Location Using SynthECA Agents

overcomes these problems. Examples of learning performance for two typical runs are
shown in Figure 55 for two qos-agents in the system. The curves shown represent the

trend in performance, not the raw experimental data.

Several experiments were performed with varying numbers of qos-agents in the system.
For the size of network shown in Figure 54, two agents were found optimal in the sense
that the converged performance of the reinforcement learners was superior to that of all
other qos-agent configurations. The variation of converged performance with the number
of qos-agents is shown is Figure 56. The difference in converged performance between
one and two agents is small but two agents are slightly superior. In addition, the time to

diagnose the location of a fault is lower.

Converged Performance vs
Agent Number

0.9
0.8
0.7 R R e

Number of Agents

FIGURE s6. Variation of Performance with Number of Agents

5.6 Interaction with the Routing System

Referring to equations 10 and 11 on page 157, we observe that the explorer agent MDF

depends upon the concentration of the reliability chemical (the r-chemical) on a particular

231

Distributed Fault Location Using SynthECA Agents

node or link. The higher the concentration of the r-chemical, the less likely an explorer
agent is to use the path element, if all other things are equal. What this implies is that
explorer agents will begin to avoid areas of the network experiencing poor quality of
service. This, in turn, implies two things. First, if routes are static; i.e., they do not change
once allocated, new connections being generated will tend to avoid the unreliable
components. Second, if we allow explorer agents to continue to roam the network after
routes are allocated, routes can be dynamic, resulting in path deallocation when sufficient
concentrations of r-chemical are deposited on unreliable components. By allowing
explorer agents to continue to explore the network, we allow the use of network resources

to vary based upon the changing reliability of routing components.

The R;j(t) term in equations 10 and 11 on page 157 can be thought of as providing a
coupling between the control and management planes in the network, with the flow of
information moving from the management to the control plane. Another flow exists, this
being the creation and destruction of q-chemical concentrations, and this flow moves from
the control to the management planes. The Ry;(t) term can be thought as providing an
inhibitory signal in the control plane, while the q-chemical concentrations laid down by
SCA agents provide an excitatory signal for the management plane. These flows, and their
implied signals, create a two level subsumption architecture as described in the section on

“Subsumption” on page 25.

232

Distributed Fault Location Using SynthECA Agents

aAm Search . : . S) :
pEiles A Simulatich ¥ Browse-S QutputEiPreference si 4

File: [demoZtxt | Layer: [Physical [#] Scale: [} | &

EJd

March 12, 2000 11:53:51 am. Design read in from text file demo2.txt.

5 Ant Search

CFileS Simulation ¥ BrowseZlQ ulpuliE Preferences ¥ Bxperime s 23S

Fle: [dema2.txt] Lager: [Physical Scale: [T |
@

®
6

2
:
o
<
£
B
¥

20

* »|

March 12, 2000 11:53:51 am. Design read in from text file dema2.txt.

]I+

FIGURE 57. Before and After routes for n3 ‘Failure’

Figure 57 shows the before and after routes for a dynamically routed connection

between nl and n8. After n3 experiences significant quality of service degradation and
233

Distributed Fault Location Using SynthECA Agents

that degradation is corrected, the explorer agents for the connection detect that nl-n3-n5-
n8 is no longer the shortest path (because of the r-chemical concentration laid down on
node n3). This causes deallocation of the original path and the creation of a new path nl-

n2-n4-n8.

It should be noted that the original explorer agents are in no way made aware of the
activities of fault location agents, they merely sense the concentrations of r-chemical laid
down once the quality of service degradation has been corrected. The concentration of r-
chemical has acted as an inhibitory signal with respect to n3 being used as part of the route

for the connection between nl and n8.

In order to ensure that a route is only recalculated when necessary, a route is not
recalculated until the percentage of returning explorer agents falls below a deallocation
threshold. In the previous chapter, an allocation threshold of 90% was used with the
associated deallocation threshold set at 50%. The dead band (50-90%) ensures that we do
not oscillate between routes; highly desirable given the expensive nature of the

connection-finding process.

5.7 Summary

This chapter has presented a multi-agent system for network management that relies on
Swarm Intelligence and, in particular, trail laying behavior in order to locate faults in a
communications network. This architecture promotes the idea of a clear separation of
sensing and reasoning amongst the classes of agents used and promotes the idea of active,

or collective, diagnosis. A chemically inspired messaging system augmented with an

234

Distributed Fault Location Using SynthECA Agents

exploitation of the ant foraging metaphor have been proposed in order to drive the mobile
agent migration process. The chapter has demonstrated how fault location determination
can arise as a result of the trail-laying behavior of simple problem agents. An
implementation of this architecture has demonstrated that mobile agents can be effectively
used to find faults in a network context. The service dependency model concept, along
with the introduction of reinforcement learning techniques for the learning of models of
fault location, have shown that global models of the network need not be provided in order
that effective fault location can occur. However, our research has observed the interaction
between multiple qos-agents and our future work will consider mechanisms based upon

Wolpert’s Collective Intelligence (COIN) research in order to overcome this.

235

CHAPTER 6 Management of Distributed Agents

6.1 Overview

This chapter concerns itself with the management of agents moving throughout a
network for the purpose of solving problems using distributed computation. In any system
that supports distributed computation in an unreliable network, there is a need to address
issues of agent density and upgrading.

An excessive number of agents in a network can significantly degrade the functioning of

that network, while too few may also compromise performance. Generally, it is sufficient

to maintain agent density within a range, a single point value is unnecessarily restrictive .

In an unreliable network we find that links or network nodes may fail with a resulting loss
of any agents executing on the node or in transit between two nodes. Some might argue
that the computing infrastructure should support reliable computation and transport.

However, this adds significantly to the complexity of the mobile agent infrastructure

L. In fact. point control is often the cause of oscillatory behaviour in a controlled system.

236

Management of Distributed Agents

required and seems contrary to the philosophy of this thesis where tolerance to individual
agent loss is a goal. Maintaining accurate statistics on agent numbers and position is really
unnecessary for solving this problem if we view it from a decentralized viewpoint. In fact,
load balancing generally may be viewed from this same point of view as we will see in a
section presented later in this chapter.

It is also too commonly the case that software, and agents are not likely to be
exceptional here, is flawed either logically or functionally. This necessitates software
modification of individual agents or complete replacement of the agent as these flaws are
discovered and new agents are constructed. A computing infrastructure supporting agent
versioning is a more challenging problem still, in that we know neither the positions of
individual agents nor the versions actively moving through the network. This presents a
serious halting problem in that we do not know the numbers of particular versions of the
agent that are active in the network. It is not possible, then, to know when the upgrade
process is complete. In other words, any algorithm or solution technique should be
capable of upgrading older versions of agents for all time.

It is difficult to conceive of an environment that automatically upgrades agent software
when changes are available which does not rely on some form of global information. For
example, the current mechanism for software upgrade used on personal computers is to
check periodically with the supplier of the software and download improvements when
available. While mirror sites partially solve the load balancing problem, the solution is
still a central one, one in which global information is held on the supplier’s web site.

Should the supplier move or disappear completely, the upgrade process fails. This,

237

Management of Distributed Agents

obviously, is an inferior solution. A decentralized solution to the versioning problem
would have no such limitation, relying instead on only local information.

This chapter proposes the use of algorithms that exploit the SynthECA formalism,
relying exclusively on local information and the emergent behavior of large numbers of

agents.

6.2 Density Control

The importance of having an appropriate number of agents in a network performing a
given task cannot be overstated. For example, in the routing problem described earlier, it
was noted that if too few agents were sent out into the network, the effects of pheromone
evaporation dominated reinforcement of the pheromone concentration causing no clear
route to emerge. This can be countered by forcing convergence towards a route through
increasing the frequency of agent generation (or increasing the number produced in a
single generation). This momentum effect ensures the timely convergence of the algorithm
to a minimum length route.

The above scenario is a less interesting example of density control when compared to
the general situation with agents moving through the network and never terminating their
problem solving activity. It is less interesting in that density control resides on the source
node where a single agent is responsible for generating explorer agents; in some sense
control is centralized. It is also straightforward in that the reliability of the network is
unimportant as a single lost explorer agent will not affect the overall route obtained. All
that may happen is that explorer agents may not reach their intended destination or will

fail to return to the source node, thereby only partially applying their reinforcement signal
238

Management of Distributed Agents

for a particular route.

Consider, then, the problem of multiple swarms of problem solving agents in an
unreliable network. Clearly, if steps are not taken to inject new swarm agents over time,
agent density will tend to zero. The argument is straightforward. Assuming that agent

movement is random and uncorrelated, given a non-zero component failure rate, As,

following a Poisson distribution, a network of n nodes, with m agents, the number of

agents failing per unit time is: mA¢/n. This expression, being unconditionally greater than

zero given n,m greater than zero, ensures that the probability that the number of agents in

the network at time t, is less than the number of agents in the network at time tg, t; > tg is

one.

Having established the need for agent replacement, a mechanism for that replacement is
required. We propose the addition of a Density Control Agent (DCA) class. The purpose
of the density control agent class is to circulate continuously in the network depositing
chemical signals in that network such that agent classes whose density is being controlled
will automatically adjust their numbers to meet the target density range. The DCA class
uses a random migration decision function in order to explore all parts of the network
equally and is responsible for controlling its own density. It also remains at each node for
a randomly generated residency period chosen from a uniform distribution in order to
avoid correlations between agent actions. This is an extremely important observation as,
without it, significantly greater oscillations are observed with possible population
extinction. Every agent class that is density controlled generates a visit chemical that is

sensed by the DCA. The DCA controls its own density in order to solve the problem of

239

Management of Distributed Agents

managing management class agents. Therefore, the DCA also generates a visit chemical.
Visit chemical concentrations are associated with the node. The visit chemical leaves a
trail of activity for the density-controlled problem solving agents that is integrated across a
number of network nodes by DCA agents for the purpose of generating birth or death
signals that are in turn sensed by the density controlled problem solving agents. Birth or
death signals are, naturally, chemical in nature and these chemicals do not evaporate.

DCA agents generate birth signals when the aggregated visit chemical concentration for
a particular density control problem solving agent class falls below a threshold value. Visit
chemical concentrations evaporate over time, this forming the dissipative field that makes
the density control mechanism work. This is a crucial part of the control process as,
without it, visit chemicals would accumulate forever leading to the rapid extinction of the
entire agent population. In fact, we make use of this observation in solving the agent
upgrade problem described later in this chapter. DCA agents generate death signals when
the aggregated visit chemical concentration for a particular density control problem
solving agent class exceeds a threshold value. Both types of signals are generated on the
node where the appropriate threshold condition is violated. An exponential averaging
process is used to aggregate visit chemical concentrations.

When a density controlled problem solving agent senses a birth signal, it clones itself,
generating a new agent with the parent agent consuming the birth signal. When a density
controlled problem solving agent senses a death signal, it chooses to die according to a

probability distribution, having first consumed the death signal.

240

Management of Distributed Agents

6.2.1 Results
In order to demonstrate the utility of the above algorithm, the two networks used for

routing experiments were revisited for density maintenance. Two classes of agent,
including the DCA and both with random migration decision functions, were allowed to
circulate within the network. A single agent of each class was injected into the network
and allowed to stabilize to the “natural” value for the network. In later experiments, extra
agents were injected into the network periodically in order to see if the density correction
algorithm could return the density to the appropriate value for the network. This had the

added side effect of ensuring that at least one DCA agent would be present in the network.

Agent Number vs Time

Ti
FIGURE 58. Agent Management Graph 1 me

The minimum concentration threshold value was set at 1, the maximum at 5. The rate at
which visit chemical was deposited on the node was 1.5 units per visit, the evaporation
rate was set to 0.8 units per simuiation time step.

Figure 58 above shows the variation of agent number with time for graphl used in the

241

Management of Distributed Agents

Agent Number vs Time

Agents

0 20 46 66 8.0 1 60 1 éO 1 40 1 éO
Time
FIGURE 59. Agent Management Graph 2

routing experiments previously described. The agent type plotted represents a very simple
agent that has a random migration pattern and is designed to measure the concentration of
visit chemical, nothing more. The focus, in this study, is the management of agent number,
and not problem solving per se. The variation of agent number with time represents the
self regulation of agents in the system, no further agents beyond the initial seed agent were
injected into the network.

The rapid rise in agent number initially is due to the fact that the network contains no
visit chemical traces for the agent type. As a consequence of this, birth signals will be
generated for all nodes visited and a large number of new agents will be generated.
Avoiding this transient is possible by injection of the DCA after the network has
stabilized, i.e., after the problem solving agents have had time to colonize the network and

lay down visit chemical traces that mark their presence in the network. Even with the start

242

Management of Distributed Agents

Agent # vs Time

Agents

(o} 20 40 60 80 100 120 140 160
Time

FIGURE 60. Agent Management with Transient Initialization for Graph 1

up transient, the network quickly recovers and settles down to a number of agents that
oscillates around 5. Similar behavior can be observed in Figure 59, where agent density
control is applied to graph2. In the experiment shown in this figure, the agent number
oscillates around 7, with the number of agents never falling below 5. The oscillation can
be further damped by choice of exponential averaging constant and by adjustment of the
minimum to maximum visit chemical concentration threshold ratio. In the experiments
charted in Figure 58 and Figure 59, a ratio of 5 was used to control the agent density.

The dynamics of this system have very similiar characteristics to Lotka-Volterra [LV 25]
multi-species competition systems, systems which display similiar initial transients and
oscillatory steady state behaviour. This should not be at all surprising as the DCA agents

act as predators by providing a death signal and by providing “food” in the form of a birth

243

Management of Distributed Agents

signal. These systems do not display asymptotic stability (i.e. converge to an attractor) but
follow a trajectory enclosing one, the system never forgetting its initial conditions.

Figure 60 and Figure 61 demonstrate the utility of having density control come online
once the network has been colonized by problem solving agents. In these experiments,
density control was disabled during the first 20 time units of the simulation. The
difference between the experiments charted in the two figures is that Figure 60 injects 4
DCA agents initially while Figure 61 injected 6 DCA agents at the start of the experiment.
Interestingly, Figure 61 shows the system moving from one stable state to another at
approximately 72 time units. Continuing the simulation beyond 160 time units saw no
further changes in state. Contrasting the dynamics of this system with those displayed in
Figure 58 clearly shows a much smaller transient and more rapid stabilization to the

steady state network behaviour. The number of agents injected initially seems to make

Agent Number vs Time

0 20 40 60 80 100 120 140 160

Time
FIGURE 61. Agent Management with
Transient Initialization using 6 agents for Graph 1

244

Management of Distributed Agents

minor differences to the final stable network state. Experiments were run wherein up to 30
agents were injected initially; the system still converged to a mean number of agents of 6.

Experiments were conducted where agents were occasionally injected into the network
in order to test the stability of the agent density management algorithm. As Figure 62
shows, injecting agents after the network has settled down merely causes the agent density
to find a new stable point, which may, of course, be the same as the original point. This is
to be expected in that many systems have several basins of stability. This characteristic is
an attractive feature of the system in that we can alter the stable system trajectory by
injection (or removal) of agents. In fact, as suggested earlier, we would propose the
periodic injection of a density control agent in order to ensure that the system never

remains locked at zero population for that agent. Figure 63 shows the destruction of agents

Agent Number vs Time agents injected

B0 e s & TN

o T

Py
o
PTDE

Agents
)
0‘4 ODRYJ

Time

FIGURE 62. Agents Injected after Settling Period for Graph 1

245

Management of Distributed Agents

Agent Number vs Time

Agents

e
»0 16y O Q& ,
1 6CI 0 EDB 0P e
DAY i 19y o ¢
DO, ’ bt ferpr

0004 B CP
-5

.
Py

0 - 50 | 100 150 7260 250
Time
FIGURE 63. Agents Destroyed after Settling Period for Graph 1

in the network after the settling period. This scenario represents the situation that initially
inspired the density management algorithm, namely the loss of agents as a consequence of
network component failure. Figure 63 shows two failures, at approximately 175 and 200
time units, where multiple agents are lost. Clearly, the algorithm has performed well, with
the natural trajectory of the system being quickly restored. Obviously a failure of all
components in the network would cause the loss of all agents; however, the scenario
demonstrated in Figure 63 actually represents a failure of 20% of the network which, in all

likelihood, represents an extreme case.
More general experiments, with random single node failures, provided equivalent
support for the robustness of the density control algorithm and results are not included

here as, it was felt, the scenario described in the previous paragraph provide a more

246

Management of Distributed Agents
dramatic illustration of the robustness of the algorithm.

6.3 Agent Upgrading

It is unfortunately the case that agents, or more generally software, never have
completely coorrect behaviour when first deployed. The problem of upgrading software in
an operational environment is challenging and is currently the focus of considerable
research [Nimg 99], [Gang 00]. The software upgrade problem presents a unique challenge
whén the software is an agent and that agent is mobile, as we have no knowledge a priori
of the location of any agent. The software upgrade problem is further complicated by no
knowledge of the number of agents to be upgraded and their source of injection into the
network. This latter piece of information is important as it implies that older, incorrect
versions of a software agent may be injected into the network once the upgrade process
has been supposedly completed. Together, these problems present a significant research
problem.

In the aforementioned research, the upgradeable software (agent) is constructed using a
number of well-known Design Patterns [Gamma 95] and relies on standard client-server
interactions. Unfortunately, this mode of interaction does not apply to the systems of
interest in this thesis and reduces the utility of the research reported within the context of
swarm systems. However, the research does describe two distinct types of swapping:
application amd module. While [Ning 99] and [Gang 00] focus on module-level swapping,
this thesis chooses to adopt application level swapping as a consequence of the mode of
interaction of the agents in the network.

The reasonimg behind this choice is clear. This thesis is concerned with the interaction of
247

Management of Distributed Agents

swarms of problem solving agents with the solution process being independent of the
actions of a single agent. The algorithms proposed in this thesis are, as stated previously,
robust with respect to the failure of an individual agent. Hence we may view the agent
upgrade problem as one of “failing” the faulty agent and injecting one with corrected
behaviour.

Not knowing the source of the agent originally injected into the network leads to the
disturbing and inevitable conclusion that the upgrade process is potentially never
complete but has phases: dormant and active. The words “dormant” and *“active” are
deliberately chosen in order to invoke an easy analogy with the human immune system.
The human immune system relies on a recognition of self and non self, using as markers
specific proteins that are attached to the exterior of T and B cells in the body. Continuing
with the view of the previous paragraph, and the language of the immune system, faulty
agents become the viruses to be detected and destroyed. Faulty agents, then, become the
non self, with the corrected agents representing self.

Referring now to the previous section on density control, and using the above immune
system analogy, a potential mechanism for removal of the faulty agent is to exploit its
response to the death signal and visit chemical concentrations. That is, increase the levels
of the visit chemical for the faulty agent such that the death signal for that agent is
generated throughout the network by an associated DCA agent. This is achieved by having
different visit chemicals for the faulty and corrected agents with the encodings so chosen
that the faulty agent senses the visit chemical of the correct agent. Hence, fault agents will

tend to see higher concentrations of visit chemical when compared to the corrected agent;

248

Management of Distributed Agents

the corrected agent will tend only to see its own. An example best illustrates this.

Consider two agent versions, vy and v, representing faulty and corrected versions
respectively having visit chemical encodings ###H#1 and ###11 respectively. Assuming the
Binary Array Chemistry of order 5, if we were to have concentrations cgand c.. of the two
chemicals, the faulty agent would sense c¢ + ¢, whereas the corrected agent would see Ce-
In other words, the faulty agent would see higher concentrations of visit chemicals and
would be more likely to see the death signal as a result of exceeding the upper bound on
visit chemical concentration. Similarly, the faulty agent would be less likely to see the
birth signal as a result of higher visit chemical concentration.

This example can easily be extended. Consider a perfect agent that corrects faults in
agent version Ve, say vp. Let v, have the visit chemical encoding ##111 and concentration
Cp- Again assuming the Binary Array Chemistry of order 5, if we were to have
concentrations, the faulty agent would sense c¢f + ¢, + cp, Whereas the corrected agent
would see c; + ¢, In this case, both veand v, would experience a reduced number of birth
signals and elevated number of death signals. As the number of Vp agents increases, the
tendency is for the number of v¢ and v, agents to decrease, eventually causing the
imperfect agent types to disappear.

This mechanism works because of the encoding scheme used for the three agent types. It
relies upon the masking of the existence of previous versions of the agent through the
increasing number of bits being specified as we move to higher and higher versions of the

agent. Obviously, this limits the number of versions that might be accommodated with a

249

Management of Distributed Agents

Binary Array Chemistry. However, a potentially infinite data structure such as can be
provided by the Binary Tree Chemistry removes this limitation. Obviously this is a more
expensive solution from a computational viewpoint -- pattern matching by bit position
versus matching by subtree -- but does solve the more general problem when an
unbounded number of agent versions need to be supported. The results in the next section

deal with a Binary Array Chemistry only.

6.3.1 Agent Upgrading Results
This section presents experimental results that demonstrate the applicability of the agent

upgrade algorithm. As indicated earlier, this algorithm exploits the masking of chemical
concentrations of one version of the agent by another. In the results presented below, the

two networks used in the density control experiments were also used as a simulation

testbed for the agent upgrade algorithm.
Agent Number vs Time

Agents

(o} 20 40 60 80 100 120 140 160 180
Time

FIGURE 64. Corrected Agent Replaces Flawed Agent

250

Management of Distributed Agents

In Figure 64, three flawed agents are injected into the network and are subject to the
density control algorithm. Eventually the number of agents stabilizes around seven. At 83
time units, a single corrected agent is injected into the network and quickly establishes
dominance over the flawed agent using the visit chemical masking mechanism introduced
in the previous section. It is not possible for the population of flawed agents to recover
once the number of flawed agents reaches zero as the birth process is one of cloning. Only

through injection of a new flawed agent into the network from some external source can

the flawed population temporarily recover.

Agent Number vs Time

Agents

0 20 40 60 80 100 120 140 160 180
Time
FiIGURE 65. Corrected Agent Replaces Flawed Agent After Re-injection

In Figure 65, the flawed agent type is re-injected into the network following the

colonization of the network by the corrected agent. The flawed agent is quickly removed

251

Management of Distributed Agents

from the network on both occasions despite (relatively) large numbers of them being
injected. While results are not included here, the number of flawed agents re-injected did
not affect the final state of the network; merely the time to achieve it. In all cases, the
flawed agents were eventually removed from the network, leaving only the corrected
agent population. Clearly, this demonstrates that the corrected agent resists recolonization
of the network by the flawed agent. The rejection of the flawed agents by the network is

faster upon re-injection as a result of the established population of corrected agents.

Agent Number vs Time

Agents

0 20 40 60 80 100 120 140 160 180
Time
FiGURe 66. Perfected Agent Replaces Flawed Agent and Corrected Agent
In order to demonstrate the robustness of the algorithm in the presence of multiple agent

versions, experiments were conducted wherein a third version -- the “perfected agent” --

was injected into the network after the corrected agent population had replaced the initial

252

Management of Distributed Agents

population of flawed agents. As can be seen in Figure 66, the perfected agent quickly
established a dominant position in the network causing the corrected agent population to
vanish completely.

Once again, subsequent re-injection of flawed or corrected agent populations did not
affect the dominant position of the perfected agent. This is clearly shown in Figure 67
where corrected and flawed agents are re-injected into the network following the perfected
agent establishing itself in the network. Reviewing the interval 25 to 45 time units in
Figure 67 also shows that the algorithm can deal with multiple agent populations
simultaneously trying to establish themselves. During this time interval, flawed, corrected

and perfected agent types are moving throughout the network; however, the corrected

Agent Number vs Time

Agents

Time

FIGURE 67. Perfected Agent Replaces Flawed and Corrected Agents After Re-
injection

253

Management of Distributed Agents

agent population is quickly extinguished even before stabilization can occur. Despite the
version control algorithm’s simplicity, it seems to be remarkably effective in maintaining
the correct dominant version in the network.

While the above results have demonstrated the effectiveness of the upgrade algorithm, a
comment regarding the rate of production of visit chemicals for successive versions of the
agent needs to be made. As stated previously, given two agent versions, vgand v, with
encodings as previously described, v¢ will see higher concentrations of visit chemical
when compared to v.. If the rates of production per nodal access of visit chemical are rg
and r,. for faulty and corrected agents respectively, and the visit chemical sensitivity ranges
are (Ig,ug) and (I.,u.) respectively, we can accelerate the removal of faulty agents by setting
the corrected agent visit chemical production rate such that r. > ug. If this relation holds,
the faulty agent will tend to see quantities of visit chemical that exceed its upper density
bound, resulting in the generation of the death signal for the faulty agent class in almost all
instances. The word almost applies here as we have to allow for the effects of evaporation
in our system. Between the departure of a corrected agent and the arrival of a faulty agent
evaporation can reduce the concentration of the visit chemicals sensed by the faulty agent
below ug.

In order for the corrected agent population to maintain density in a similiar way to the
flawed agent population with the relationship r, = u¢ holding other parameters have to be
modified too. If we assume the rate of evaporation remains unchanged, the following

relationships have to hold:

254

Management of Distributed Agents

_ Y.
llc =

Ty

I = bre

e

6.4 Summary

In a network managed completely by swarms of mobile agents, two important
observations need to be made. First, the number of agents is unknown and second, the
positions of mobile agents are unknown. These characteristics make management of the
swarm populations extremely challenging.

This chapter has addressed two questions related to the management of mobile agent
swarms.

The first question relates to the maintenance of population density and we have
presented algorithms that maintain population density in a network having unreliable
components. The algorithms presented rely on only local knowledge and we have shown
by experiment that populations quickly settle to a mean population around which they
oscillate. The oscillation is natural and unavoidable, having very similiar characteristic to
the dynamics observed for Lotka-Volterra predator prey systems. The algorithms present
are robust with respect to the introduction of agents after the network has stabilized as
well as loss due to component failure.

The second question deals with the upgrading of agents over time. Agents, being
software entities, rarely have correct behaviour when first introduced into service and
often require upgrades. This chapter describes a number of algorithms that solve the

upgrade problem by taking advantage of the density control algorithm in a form of

255

Management of Distributed Agents

parasitic behaviour where a corrected agent “fools” the flawed agent population into
believing that there are more of them than there are; the flawed agent population quickly
decaying to zero. The upgrade algorithm, given an unbounded data structure such as is
provided by the Binary Tree Chemistry, is capable of solving the problem of an infinite

number of versions and is resilient to the re-introduction of older agent versions.

256

CHAPTER 7 Conclusions and Future Work

7.1 Introduction

Mobile agents are currently thought to provide a new type of distributed problem
solving paradigm [White 99c] where simple agents interact and solutions emerge. This
thesis has introduced a novel way of looking at distributed problem solving by
exploitation of several physical and biological systems. The integration of ideas from
social insect behaviour with chemical computation has provided a powerful problem
solving framework, the utility of which has only been briefly explored in this thesis. Its
motivations for choosing the systems exploited arise from the network problems solved in
the previous chapters. In a wider problem domain, however, it would no doubt prove
desirable to exploit elements of other naturally-occurring systems. Nature, after all,
provides striking examples of diversity in the systems that exist today and elements of that
diversity have been described in sections 2.3.2 to 2.3.6. This thesis, therefore, does not
provide a definitive set of techniques for distributed problem solving but hints at the

essential qualities of such techniques. In this regard, the chapter on architecture, and the

257

Conclusions and Future Work

background material which preceeds it, form the backbone of the contributions made by
this thesis. Figure 23 on page 103 is arguably the most important figure in this thesis as it
captures the essence of what makes swarm systems work. The specification of the
SynthECA architecture that closely follows the figure then provides an architectural
expression of that figure; the sections on Chemistry and agent sensory apparatus being the
most significant.

This thesis makes contributions in a number of areas. Firstly, the thesis provides a
synthesis of activation-oriented systems and symbol rewriting systems through the use of
chemicals and chemical reactions. An agent architecture is developed with these concepts
that embodies swarm problem solving and embraces the Chemical Abstract Machine
formalism well known to Computer Science. The architecture also supports the concept of
subsumption, or layering, through the use of chemical signalling in order that complex
systems of interacting swarms may be developed. Most noteworthy in the architecture is
the complete absence of any global knowledge or centralized control. There is no “blind
watchmaker” in this thesis.

While agent architectures are interesting from an academic viewpoint, their utility
should be measured, in part, by their problem solving potential. This thesis presents a
number of applications drawn from the communications domain that demonstrate the
power of the SynthECA architecture.

The promise of mobile agents has yet to be realized for several reasons, not least of
which is the significant security questions and need for multi-language execution

environments that they raise. However, from a network engineering standpoint, questions

258

Conclusions and Future Work

of agent lifecycle management and population control are vitally important and this thesis
provides simple answers to them. In fact, the deceptive simplicity of the ideas and
algorithms presented here makes one want to ask the question, “Can it really be this
simple?” We make no apology for the simplicity of the solutions provided here; appealing
instead to the argument regarding the importance of representation in problem solving.
Obviously Nature provides us with a large number of examples of successful systems that
exhibit complex, emergent behaviour where individual components appear simple.
Complexity from simplicity is a recurring theme in much of the Artificial Life research
that is active today.

However, this thesis, as all others, starts by posing a single question only to find that
numerous related questions quickly appear. This thesis, we believe, is a starting point from
which a rich vein of research into distributed problem solving using stigmergic

communication can proceed.

7.2 Future Research

This section describes a number of future directions for the research described in this

thesis.

7.2.1 Search techniques
In the chapter on routing, an algorithm was developed in order to speed up the

convergence of the basic Ant Search algorithm. While successful in the routing domain,
work is ongoing to apply the ASGA system to the TSP and asymmetric TSP as proposed

in [Dorigo 96]. Also, [Gambardella 95] have proposed Ant-Q, a family of combinatorial

259

Conclusions and Future Work

optimization algorithms that represent the synthesis of Q-Learning and Ant Search. Future
work will extend ASGA to incorporate Ant-Q algorithms in order to determine the utility
of adaptation in this new family of search algorithms. Particle Swarm optimization
[Eberhart 95] - a technique based upon similiar reinforcement mechanisms to the Ant
Search method -- may also benefit from self adaptation of its controlling parameters. As
has been noted by Dorigo himself, only a single form of the decision function used in ant
migration has been explored and a systematic exploration of the interaction of Ant System
parameters has yet to be performed. Considerable experimental work remains to be done
here. While the TSP results using Ant Search have been very encouraging, a theoretical
understanding remains elusive. We believe that [Millonas 94] work using ideas from

Statistical Physics may well prove useful in constructing a sound theoretical framework.

7.2.2 Other Applications Areas
Given that the SynthECA architecture consists of agents moving on a graph, problems

involving search within a graph may well benefit from its application. Specifically, there
are other applications within the telecommunications domain besides routing and load
balancing, for which Swarm Intelligence may prove useful.

In addition to the quadratic assignment problem and the job shop scheduling problem,
which have obvious uses within and outside telecommunications, some work has been

done on temporal graphs and correlation.

7.2.2.1 Alarm Correlation
The concept behind using swarm intelligence for alarm correlation is that alarms arrive

260

Conclusions and Future Work

separated in time and space, and this can be thought of as forming a temporal graph.
Finding correlations between alarms, i.e., diagnosing problems is equivalent to
partitioning the graph into a number of cliques. Swarm Intelligence has been used for
graph partitioning [Kunz 94].

The factors that effect the partitioning of alarms include:

e temporal closeness
e topological closeness — within and between network layers

e logical closeness — known direct causal relationships

These factors could be introduced into a swarm intelligence algorithm, and the
sensitivity to each value can be varied using a power relationship with a sensitivity factor
(raising to a power works well for routing and TSP).

As ants explore the graph, they will lay a pheromone trail representing the partitioning
they have found. Other ants have a tendency to follow this trail, based on a sensitive
factor, as for the other grouping factors.

Over time, the pheromone trails will be reinforced as more ants follow that path. This
can be seen as a positive feedback search technique, which is controlled by evaporating
the pheromone at a constant rate. This means that infrequently used relationships between
alarms will evaporate toward zero, thus making their use more unlikely.

Solutions correspond to large accumulations of pheromone between nodes in a closed
ring formation, the clique. The decision as to whether a large enough ring of pheromone
has emerged has yet to be investigated.

Unlike routing problems where paths are limited to following arcs between nodes, the

261

Conclusions and Future Work

alarm correlation problem allows ants to explore any appropriate alarm nodes on the
graph. Clearly, this can be large, but it is anticipated that the complexity of the problem
can be reduced by using a sliding window technique. This removes ‘old’ alarms over time,
but can also be modified to ‘forget’ alarms that have been resolved, or to remove
‘irrelevant’ alarms. This sliding window technique can be seen as a global controller over
the algorithm.

Use of this graph partitioning technique should lead directly to solutions where there are

multiple faults, as this corresponds to multiple partitions within the graph.

7.2.2.2 World Wide Web
The section on “Application Oriented Routing” on page 190 describes an algorithm --

the AOR algorithm -- that improves quality of service where applications learn to share
path elements in order to take advantage of their complementary statistical properties. The
algorithm, based upon evolving chemical encodings, has been shown experimentally to
improve the average quality of service experienced by applications in a number of
networks.

The AOR algorithm, we believe, can be applied to the vexing problem of meaningful
surfing on the World Wide Web. While finding an initial web page of interest is hard in
itself, with search engines currently being exploited in order to attract a surfer to particular
pages, the problem of which link to follow once on a particular page remains largely
unaddressed. Ideally, we would like to take advantage of previous surfers’ choices in link
following in order to improve the quality of the surfing experience. This can be thought of

as a routing problem where we want to follow links that were found of most interest to a

262

Conclusions and Future Work

class of user with a complementary search question.

By encoding search questions using chemicals, possibly using hash coding for the
keywords, and page summarization using a technique similiar to Extractor [Extractor],
the AOR algorithm could be used to retrieve a set of web pages that follow a particular
path in the web. Essentially, this would provide for a form of collaborative filtering across
the World Wide Wide (WWW).

There are a number of privacy issues related to the above as such a technique would
necessitate the leaving of a trail of information for each search performed by the user.
Such information might subsequently be exploited for commercial or other reasons.
However, it would doubtless improve the quality of the surfing experience which is

currently being degraded at an alarming rate.

7.2.3 Open Chemistry Research
While the SynthECA architecture allows for closed and open chemical universes, this

thesis has chosen to explore the application of a closed, binary chemistry. The simple

binary chemistry used throughout this thesis was sufficient to solve routing, fault location

and agent management problemsl but this choice presupposes that no new or evolved
behaviour is required in the system.

Many problem domains, e.g., automatic programming, require a problem representation
that supports variable solution size and complex pattern matching. An example of a

solution technique that deals with variable size solutions is Genetic Programming [Koza

L. In theory, an open chemistry is potentially required for the agent upgrade algorithm.

263

Conclusions and Future Work

92]; a technique that has proven to be remarkably effective in the solution of many
difficult automatic programming problems; e.g, the design of electronic circuits.

Given Genetic Programming as the inspiration for using variable size representations, an
open chemical universe might well prove useful in generating autopoietic systems as
described by Varela and recently clarified by McMullin. A line of research of this nature,
where chemical reaction pathways are generated in support of stable information
processing structures, have application in environments that are intended to be self

sustaining, such as communication networks and the WWW.

7.2.4 Learning
This thesis has concentrated on the specification of an agent architecture that supports

collaboration through communication using the environment. We have not considered the

evolution of agent swarms themselves!.

Consider for a moment that agent swarms are defined as being capable of executing a set
of functions, {F}, and terminals, {T}, and that actions, A, are defined as the interpretration
of a sequence of functions and terminals. These actions are associated with receptors. In
essence, this describes the encoding strategy used in Genetic Programming. Given, then,
that we have already defined an encoding for chemicals and chemical reactions, it would
be possible to define a complete encoding for the agent. Given a complete agent encoding,
it would then be possible to evolve agent swarms to perform a given task, given a problem

domain and definition of fitness in solving a problem in that domain.

1. Arguably the AOR algorithm represents sensor/receptor evolution.

264

Conclusions and Future Work

We believe that research in Artificial Life is already moving in this direction
[Creatures99] and that more realistic agent-based simulation software will soon emerge
from it. While swarm systems have beeen applied to games involving strategy; e.g., chess
[Drogoul 95], learning of the form described above might well prove promising in

improving the performance of such sy stems.

7.2.5 Theory
This thesis has concentrated on an architectural specification and proving its utility by

application in an important problemx domain, that of the management and control of
communication networks. However, the contributions contained in this thesis need to be
supported by sound theoretical analwses for different network architectures and agent
chemical constitutions. It is clear that all theoretical literature relating self organization
and non-linear irreversible processes is relevant here. Most noteable amongst this body of
work would be Prigogine’s results on self organization in nonequilibrium systems
[Prigogine 77], self organizing criticality [Bak 96] and the ecology of computation
[Huberman 88].

Considerable work on molecular evolution, and specifically the identification of
reaction pathways which make such evolution inevitable, is of considerable importance.
The identification of the Hypercycle [Eigen 79], and its underlying theoretical analysis,
constitute a body of work that could be applied to an analysis of classes of SynthECA

architectures.

265

Conclusions and Future Work

7.3 Summary

This thesis has been inspired by the seemingly effortless way in which naturally
occurring systems solve complex problems with simple components. It has never ceased
to amaze us that chemical reactions and diffusion provide a rich environment for
information processing. As a result, this thesis has brought together several ideas from
areas spanning Computer Science, Biology, and Chemistry and applied them to a series of
problems in the Engineering domain.

The thesis began with observations concerning the increasing importance of
decentralization in systems thinking and the movement toward agent-oriented and mobile

computing. With these observations, and the acknowledged success of simple social

insects! in the solution of complex problems, we were led to the simple agent architecture
we called the Synthetic Ecology of Agents, or SynthECA. In SynthECA, chemicals and
chemical reactions are modelled within the agent by symbol re-writing and diffusion
represented by a migration decision function. We have, we believe, demonstrated that
information processing can occur in SynthECA systems in the same way that Reaction-
Diffusion systems [Sherstinsky 94] are capable of complex information processing.

While the proof by existence that this thesis provides for the information processing
characteristics of the chemically-inspired architecture presented is an interesting starting
point, we believe, more importantly, that it sets out an agenda for future research into
multi-agent (swarm) systems.

We look forward to contributing to this research effort.

1. Nature’s mobile agents.

266

[Appleby 94]

[Bak 96]

[Banzaf 95]

[Beckers 92]

[Benatre 88]

[Beni 89]

[Beni 90]

[Berry 92]
[Bertsekas 87]

[Bieszczad 98]

[Bieszczad 97]

[Bluetooth 99]
[Bonabeau 94]

References

Appleby S. and Steward S., Mobile Software Agents for Control
in Telecommunications Networks, BT Technological Journal 12
(2), pp. 104-113, April, 1994.

Bak, P. How nature works; the science of self-organized critical-
ity. Copernicus, New York, 1996.

Banzaf, W., Self Organizing Algorithms derived from RNA
Interactions, Evolution and Biocomputation: Computational
Models of Evolution, Lecture Notes in Computer Science Vol.
899, Springer Verlag 1995.

Beckers R., Deneuborg J.LL and Goss S. 1992. Trails and U-turns
in the Selection of a Path of the Ant Lasius Niger. In J. theor.
Biol. Vol. 159, pp. 397-415.

Banatre J-P., Coutant A, Le Metayer D. A parallel machine for
multiset transformation and its programming style. In Future
Generation Computer Systems 4, pp. 133-144. North-Holland,
1988.

G. Beni and J. Wang, Swarm Intelligence in Cellular Robotic
Systems, Proceedings of the NATO Advanced Workshop on
Robots and Biological Systems, Il Ciocco, Tuscany, Italy, 1989.

Beni G, Key issues of the theory of cellular automata as applied
to swarm intelligence, Proceedings of the 1990 IEEE Interna-
tional Symposium on Intelligent Control, Philadelphia.

Berry, G. and Boudol, G, The Chemical Abstract Machine, Theo-
retical Computer Science, 96(1), pp. 217-248, 1992.

D. Bertsekas and R. Gallager, Data Networks, ISBN 0-13-
196825-4, Prentice Hall, pp.297-406, 1987.

Bieszczad, A. and Pagurek, B., Network Management Applica-
tion-Oriented Taxonomy of Mobile Code, to be presented at the
IEEE/IFIP Network Operations and Management Symposium
NOMS98, New Orleans, Louisiana, February 1998.

Bieszczad, A. and Pagurek, B., Towards plug-and play networks
with mobile code, to be presented at the International Conference
for Computer Communications [CCC97, November 19-21,
1997, Cannes, France.

URL: http://www.bluetooth.com

Bonabeau E., and Theraulaz G, Intelligence Collective, Hermes,
Paris, 1994.

267

[Bonabeau 98]

{Boyan 94]

[Boyer 99]

[Brenner 98]

[Brooks 86]
[Brooks 91]

[Brusselator]

[Bullnheimer 97]

[Cabri 00]

[Cabri 99]

[Case 90]

[Case 93]

Bonabeau E., Henaux F., Guérin S., Snyers D., Kuntz P. and
Théraulaz G., Routing in Telecommunication Networks with
Smart Ant-Like Agents. Proceedings of Second International
Workshop on Intelligent Agents for Telecommunication Applica-
tions (IATA ‘98), 1998.

Boyan J.A. and Littman M. L., Packet routing in dynamically
changing networks: A reinforcement learning approach. In
Cowan, J. D., Tesauro, G., and Alspector, J. (eds.), Advances in
Neural Information Processing Systems 6 (NIPS). Morgan Kauf-
mann, 1994.

Boyer, J., Pagurek, B., White, T., Methodologies for PVC Con-
figuration in Heterogeneous ATM Environments Using Intelli-
gent Mobile Agents. In Proceedings of the st Workshop on
Mobile Agents and Telecommunications Applications (MATA
99), October, 99.

Brenner, W., Zarnekow, R., and Wittig, H., Intelligent Software
Agents: Foundations and Applications, Springer Verlag, Heidel-
berg, 1998.

Brooks, R.A., Achieving Artificial Intelligence Through Build-
ing Robots, A.I. Memo 899, MIT A.L Lab, 1986.

Brooks, R.A., Intelligence Without Representation, Artificial
Intelligence, Vol. 47, pp- 139-159, 1991.

http://www.cmp.caltech.edu/~mcc/STChaos/,

http://www.cherwell.com/cherwell/products/simulation/model-
maker/bruss.htm

Bullnheimer B., R.F. Hartl and C. Strauss, Applying the Ant Sys-
tem to the Vehicle Routing Problem. 2nd Metaheuristics Interna-
tional Conference (MIC-97), Sophia-Antipolis, France, 1997.
Cabri G, Leonardi L., Zambonelli F.,

Mobile-Agent Coordination Models for Internet Applications
IEEE Computer Magazine, Vol. 33, No. 2, February 2000.

Cabri G, Leonardi L., Reggiani G, Zambonelli F.,

Design and Implementation of a Programmable Coordination
Architecture for Mobile Agents, Proceedings of the TOOLS
EUROPE 99 Conference, Nancy (F), June 1999.

Case, J. D., Fedor, M., Schoffstall, M. L. and Davin, C., Simple
Network Management Protocol, RFC 1157, May 1990.

Case, J.D., and Levi, D. B. , SNMP Mid-Level-Manager MIB,
Draft, IETF, 1993.

268

[Chess 97]

[Clark 97]

[Clearwater 96]

[Color 92]

[Color 94]

[Coombs 87]

[Costa 97]

[Creatures99]
[Davis 87]

[Davis 87a]

[Deneubourg 90]

[Di Caro 97]

Chess D., Harrison C., and Kershenbaum A., Mobile agents: Are
they a good idea? In Mobile Object Systems: Towards the Pro-
grammable Internet, pages 46-48. Springer-Verlag, April 1997.
Lecture Notes in Computer Science No. 1222

Clark, L. J., and White, A. R. P., Real Time Control Architecture
for Admission Control in a Communication Network, US Patent
Application 08/873497, 1997.

Clearwater S. H. (ed.), Market-Based Control: A Paradigm for
Distributed Resource Allocation. World Scientific, 1996.

Colorni A., Dorigo M. and Maniezzo V. An Investigation of
Some Properties of an Ant Algorithm. Proceedings of the Paral-
lel Problem Solving from Nature Conference (PPSN 92), Brus-
sels, Belgium, R.Mianner and B.Manderick (Eds.), Elsevier
Publishing, 509-520, 1992.

Colorni A., Dorigo M., Maniezzo V., and Trubian M., Ant Sys-
tem for Job-shop Scheduling, Belgian Journal of Operations
Research, Statistics and Computer Science, 1994.

Coombs, S., and Davis, L., Genetic Algorithms and Communica-
tion Link Speed Design: Theoretical Consideration, In Proceed-
ings of the Second International Conference on Genetic
Algorithms, pp. 252-256, 1987.

Costa D. and Hertz A., Ants Can Colour Graphs. Journal of the
Operational Research Society, 48, 295-305, 1997.

http://www.cyberlife.co.uk/

Davis, L. (editor), Genetic Algorithms and Simulated Annealing,
Morgan Kaufmann Publishers Inc, Los Altos, CA, 1987.

Davis, L., and Coombs, S., Genetic Algorithms and Communica-
tion Link Speed Design: Constraints and Operators, In Proceed-
ings of the Second International Conference on Genetic
Algorithms, pp. 257-260, 1987.

Deneubourg, J.L., et al, The Dynamics of collective Sorting:
Robot-Like Ants and Ant-Like Robots, in From Animals to Ani-
mats: Proc. First Int. Conference on Simulation of Adaptive
Behavior, J-A. Meyer, and S.W. Wilson, eds., Paris, France, pp.
356-363, 1990.

Di Caro G and Dorigo M., AntNet: A Mobile Agents Approach
to Adaptive Routing. Tech. Rep. IRIDIA/97-12, Université Libre
de Bruxelles, Belgium, 1997.

269

[Di Caro 98]

[Dijkstra 59]

[Doran 97]

[Dorigo 91]

[Dorigo 92]

[Dorigo 96]

[Drogoul 95]

[Eberhart 95]

[Eigen 79]

[Extractor]
[Faieta 94]

[Ferguson 92]

[Ferguson 95]

[Fitzgerald 88]

Di Caro G. & Dorigo M., AntNet: Distributed Stigmergetic Con-
trol for Communications Networks. Journal of Artificial Intelli-
gence Research (JAIR), 9:317-365, 1998.

Dijkstra E.W. A Note on Two Problems in Connexion with
Graphs In Numerische Mathmatik vol. 1, 1959.

Doran J. E., Franklin S., Jennings N. R. and Norman T. J. "On
Cooperation in Multi-Agent Systems"” The Knowledge Engineer-
ing Review, 12(3), 309-314. October, 1997.

Dorigo M., Maniezzo V. and Colorni A., The Ant System: An
Autocatalytic Optimizing Process. Technical Report No. 91-016,
Politecnico di Milano, Italy, 1991.

Colorni A., Dorigo M. and Maniezzo V. Distributed Optimiza-
tion by Ant Colonies. Proceedings of the First European Confer-
ence on Artificial Life, Paris, France, F.Varela and P.Bourgine
(Eds.), Elsevier Publishing, 134-142, 1992

Dorigo M., Maniezzo V. and Colorni A. The Ant System: Opti-
mization by a Colony of Cooperating Agents. IEEE Transactions
on Systems, Man, and Cybernetics-Part B, 26, 1, 29-41, 1996

Drogoul A. In From reaction to cognition, lecture notes in Al
957, C. Castelfranchi & J.P. Miiller (Eds), pp- 13-27, Springer-
Verlag, Berlin-Heidelberg, 1995.

Eberhart R. and Kennedy J., A New Optimizer Using Particles
Swarm Theory, Proc. Sixth International Symposium on Micro
Machine and Human Science (Nagoya, Japan), IEEE Service
Center, Piscataway, NJ, 39-43, 1995

Eigen, M. and Schuster, P., The Hypercycle: A Principle of Natu-
ral Self Organization, Springer Verlag, New York, 1979.
http://extractor.iit.nrc.ca/

Faieta B., and Lumer E., Diversity and Adaptation in Populations
of Clustering Ants, proceedings of Conference on Simulation of
Adaptive Behaviour, Brighton, 1994.

Ferguson, [.A., The Touring Machine, PhD thesis, Cambridge
University, England, 1992.

Ferguson, I.A.,. On the Role of BDI Modelling for Integrated
Control and Coordinated Behavior in Autonomous Agents. Jour-
nal of Applied Artificial Intelligence, 9(4), 1995.

Fitzgerald T.D., Peterson S.C. Cooperative foraging and commu-
nication in caterpillars, Bioscience, 38, pp. 20-25, 1988.

270

[Fontana 91]
[Franks 89]

[Gambardella 95]

[Gamma 95]

[Gang 00]

[Gelemnter 86]

[Godel 31]

[Goldberg 89]

[Goss 90]

[Grassé 59]

[Grasshopper]

[Hayzelden 99]

[Heusse 98]

Fontana W., Algorithmic Chemistry, Artificial Life II, pp.159-
209, 1991.

N.R. Franks, Army Ants: A Collective Intelligence, Scientific
American, Vol. 77, 1989.

Gambardella L.M. & M. Dorigo. Ant-Q: A Reinforcement
Learning Approach to the Traveling Salesman Problem. Proceed-
ings of ML-95, Twelfth International Conference on Machine
Learning, Tahoe City, CA, A. Prieditis and S. Russell (Eds.),
Morgan Kaufmann, 252-260, 1995.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., and Booch, G,
Design Patterns : Elements of Reusable Object-Oriented Soft-
ware, Reading MA: Addison-Wesley, October, 1995.

Gang, A., Software Hot Swapping Techniques for Upgrading
Mission Critical Applications on the Fly, Master of Engineering
Thesis, Department of Systems and Computer Engineering, Car-
leton University, April, 2000.

D. Gelemter, Domesticating Parallelism, I[EEE Computer,
19(8):12-16, August 1986.

In S Feferman, Géddel's Collected Works (1986), 1-36.
Also: http://www.math.hawaii.edu/~dale/godel/godel.html

Goldberg, D., Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

Goss S., Beckers R., Deneubourg J.L., Aron S., Pasteels J.M.
1990. How Trail Laying and Trail Following Can Solve Foraging
Problems for Ant Colonies, in Hughes R.N. (ed.) NATO ASI
Series, Vol. G 20, Behavioural Mechanisms of Food Selection,
Springer Verlag, Berlin.

Grassé P.P., La reconstruction du nid et les coordinations inter-
individuelles chez Bellicoitermes natalenis et Cubitermes sp. La
theorie de la stigmergie: Essai d'interpretation des termites con-
structeurs. In Insect Societies, Vol. 6, pp. 41-83, 1959.

Mobile Agent Platform- The OMG-MASIF conformant mobile
agent platform in Grasshopper, URL: http://www.ikv.de/prod-
ucts/grasshopper/

Hayzelden and Bigham (Eds.), Software Agents for Future Com-
munications Systems, Springer Verlag, 3-540-65578-6, 1999.

M. Heusse, D. Snyers, S. Guérin, and P. Kuntz, Adaptive Agent-
Driven Routing and Load Balancing in Communication Net-
works, Ants'98, Brussels, Belgium, October, 1998.

271

[Holland 96]

[Holland 86]

[Holland 75]
[Holldob!er 94]
[Huberman 88]

[Ishida 96]

[ini]
[Kelly 95]

[Kephart 98]

[Korf 90]

[Koza 92]

[Kugler 87]

[Kunz 94]

Holland, J., H., and Mimnaugh, H., Hidden Order: How Adapta-
tion Builds Complexity, Helix Books, 1996.

Holland, J. H., Escaping Brittleness: the Possibilities of General-
Purpose Learning Algorithms applied to Parallel Rule-Based
Systems. In Machine Learning, an Artificsial Intelligence
Approach, Volume II, edited by R.S. Michalski, J.G. Carbonell
and T.M. Mitchell, Morgan Kaufmann, 1986.

Holland, J. H., Adaptation in Natural and Artificial Systems,
University of Michigan Press, 1975.

Holldobler B. and Wilson E.O., Journey two the Ants. Bellknap
Press/Harvard University Press, 1994.

Huberman, B.A., The Ecology of computation. North-Holland,
Amsterdam, 1988.

Ishida, Y., Active Diagnosis by Immunity -Based Agent
Approach, Proceedings of the Seventh International Workshop
on Principles of Diagnosis (DX 96), Val-Morin, Canada, pp. 106-
114, 1996.

http://www.sun.com/jini/

Kelly, K., Out of Control : The New Biolo gy of Machines, Social
Systems and the Economic World, Perseu:s Press, 1995.

Kephart J. O., Hanson J. E., Levine D. W., Grosof B. N., Sair-
amesh J., Segal R. B., and White S. R., Dwynamics of an Informa-
tion-Filtering Economy, Proceedings of Second International
Workshop on Cooperative Information Agrents 98, Paris, July 4-
7, 1998.

Korf, R., Planning as search: A quantitatiwe approach. Artificial
Intelligence, Vol. 33, No. 1, 1987, pp. 65-88. Reprinted in Read-
ings in Planning J. Allen, J. Hendler, and A. Tate (Eds.), Morgan
Kaufmann, pp. 566-577, 1990

Koza, J., R., Genetic Programming : On thhe Programming of
Computers by Means of Natural Selection. (Complex Adaptive
Systems), Bradford, 1992.

Kugler, P. and Turvey, M. T., Information,. natural law, and the
self-assembly of rhythmic movement, Hillsdale, N.J., Erlbaum.
1987

P. Kuntz and D. Snyers, Emergent Colonization and Graph Parti-
tioning. Proceedings of the Third InternatEonal Conference on
Simulation of Adaptive Behavior: From Amimals to Animats 3,
MIT Press, Cambridge, MA, 1994.

272

[Labrou 97]

[Langton 87]

[Leer 95]

[LV 25]
[Maes 89]

[Maniezzo 94]

[Mann 95]

[Micmac]
[Millonas 94]

[Minsky 88]
[Mole]
[Muller 96]

[Ndovie 94]

[Newell 80]

Labrou R., KQML as an Agent Communication Language, in
“‘Software Agents”, Jeffrey Bradshaw (editor), AAAI/MIT
Press, 1997. Authors: Tim Finin, Yannis Labrou and James May-
field.

Langton, C.G, Artificial Life, Proceedings of an Interdiscipli-
nary Workshop on the Synthesis and Simulation of Living
Things, Los Alamos, New Mexico, Addison Wiley, 1987.

Leerink L. R., Schultz S.R. and Jabri M.A., A Reinforcement
Learning Exploration Strategy based on Ant Foraging Mecha-
nisms. Proceedings of the Sixth Australian Conference on Neural
Networks, Sydney, Australia, 1995.

http://www.ento.vt.edu/~sharov/PopEcol/lec10/lotka.html

Maes P., A Spreading Activation Network for Action Selection,
Intelligent Autonomous Systems-2 Conference, Amsterdam,
December 1989.

Maniezzo V., A. Colorni and M. Dorigo, The Ant System
Applied to the Quadratic Assignment Problem. Tech. Rep. IRI-
DIA/94-28, Université Libre de Bruxelles, Belgium, 1994.

Mann J., White T. and Turner J., Optimal Route Finding in ATM
Networks Using Genetic Algorithms, in Proceedings 7th BNR
Design Forum, December, 1995.

http://micmac.mitel.com/micmac.htm

Millonas M. M., Swarms, Phase Transitions and Collective Intel-
ligence, In Artificial Life ITI (ed. C. G. Langton). Santa Fe Insti-
tute Studies in the Sciences of Complexity, Proc. Vol XVII.
Reading, Massachusetts: Addison-Wesley, 1994.

Minsky, M., L., The Society of Mind, Simon and Schuster, 1988.
http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole/
security.html

Muller, J.P., The design of intelligent agents: a layered approach,

Lecture Notes in Computer Science, Vol. 1177, Springer Verlag,
Heidelberg e.a. 1996.

Ndovie, B., Multi-agent cooperation in air traffic control: A
functional analysis. DAKE Centre Technical Report DAKE/-/
TR-940013.0, University of Keele, Dake Centre, University of
Keele, Keele, Staffs STS 5BG, UK, February 1994.

Newell, A., Physical Symbols Systems, Cognitive Science 4,
135-183, 1980.

273

[Ning 99]

[0.V. 97a]

[0.V. 97b]

[O’Hare 96]

[Pagurek 98]

[Pagurek 00]

[Parunak 98]

[Picco 98]

[van Gelder 95]

[Prigogine 77]

[Rao 95]

Ning, F., Software Hot Swapping, Master of Engineering thesis,
Department of Systems and Computer Engineering, Carleton
University, September, 1999.

0.V, Methodological Assumptions of Subsumption, URL: http://
krusty/eecs/umich.edu/cogarch/brooks/method.html

0.V., Notes: The subsumption architecture, URL: http://
www_janus.demon.co.uk/alife/notes/subsump.html.

O'Hare G. M. P. and Jennings N. R. (eds.), Foundations of Dis-
tributed Artificial Intelligence, ISBN 0-471-00675-0, John Wiley
& Sons, 1996

Pagurek B., L1 Y., Bieszczad A., and Susilo G., Configuration
Management In Heterogeneous ATM Environments using
Mobile Agents, Proceedings of the Second International Work-
shop on Intelligent Agents in Telecommunications Applications
(IATA '98).

Pagurek, B., Wang, Y., White, T., Integration of Mobile Agents
with SNMP: How and Why. Proceedings of the IEEE/IFIP Net-
work Operations and Management Symposium, Hawaii, May
2000.

H. Van Dyke Parunak, Go to the Ant: Engineering Principles
from Naturally Multi-Agent Systems, to appear in Annals of
Operations Research. Available as Center for Electronic Com-
merce report CEC-03, 1998.

Picco, G. and Baldi, M., Evaluating the Tradeoffs of Mobile
Code Design Paradigms in Network Management Applications.
In Proceedings of the 20" International Conference on Software
Engineering (ICSE’'98), Kyoto (Japan), R. Kemmerer and K.
Futatsugi, eds., April 1998, IEEE CS Press, ISBN 0-8186-8368-
6, pp- 146-155.

van Gelder, T. and R. Port, It's about time: An overview of the
dynamical approach to cognition, Mind as motion: Explorations
in the dynamics of cognition, in R. Port, and T. van Gelder eds.,
Cambridge, MA: MIT Press, 1995

Nicolis, G. and Prigogine, I. Self-Organization in Nonequilib-
rium Systems: From Dissipative Structures to Order Through
Fluctuations, Wiley, New York, 1977.

Rao A. S. and Georgeff M., BDI Agents: from theory to practice.
In Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS-95), pp. 312--319, San Francisco, CA,
June 1995.

274

[Resnick 94]

[Reynolds 87]

[Robinson 65]
[Sander 97]

[Schoonderwoerd 97]

[Schramm 98]

[Seth 98]

[Shapiro 88]

[Sherstinsky 94]

[Shoham 93]

[Steels 95]

[Steiglitz 96]

[Stiitzle 97]

Resnick, M., Turtles, Termites and Traffic Jams, Explorations in
Massively Parallel Microworlds, MIT Press, 1994.

Reynolds, C. W. Flocks, Herds, and Schools: A Distributed
Behavioral Model, in Computer Graphics, 21(4) (SIGGRAPH
87 Conference Proceedings) pp. 25-34, 1987.

Robinson, J. A. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, January 1965.

Sander, T., Tschudin, C., Towards Mobile Cryptography. Techni-
cal Report 97-049, Institute of Computer Science, Berkley, 1997.

Schoonderwoerd R., Holland O. and Bruten J., Ant-like Agents
for Load Balancing in Telecommunications Networks. Proceed-
ings of Agents 97, Marina del Rey, CA, ACM Press pp. 209-216,
1997.

Schramm, C., Bieszczad, A. and Pagurek, B., Application-Ori-
ented Network Modeling with Mobile Agents, Proceedings of
the IEEE/IFIP Network Operations and Management Sympo-
sium NOMS 98, New Orleans, Louisiana, February 1998.

Seth, A.K., The Evolution of Complexity and the Value of Vari-
ability In Proceedings of the 6th International Conference on
Artificial Life (ALIFE VI), eds. C. Adami, R. Belew, H. Kitano,
and C. Taylor, MIT Press, pp 209-221, 1998.

Shapiro, J. A., Bacteria as multi cellular organisms, Scientific
American, pp. 82-89, 1988.

A. S. Sherstinsky, M-Lattice: A System for Signal Synthesis and
Processing Based on Reaction-Diffusion, Sc.D. thesis, Massa-
chusetts Institute of Technology, Cambridge, MA (1994).

Shoham, Y., Agent-oriented programming. Artificial Intelli-
gence, 60(1):51-92, 1993.

Steels, L., and Brooks, R.. Building Situated Embodied Agents.
The Alife route to AL. Lawrence Erlbaum Assoc., New Haven.
1995.

Steiglitz K., Honig M. L., Cohen L. M. A Computational Market
Model Based on Individual Action. In S. Clearwater (ed.), Mar-
ket-Based Control: A Paradigm for Distributed Resource Alloca-
tion. World Scientific, 1996.

Stiitzle T. and Hoos H. 1997. The MAX-MIN Ant System and
local Search for Combinatorial Optimization Problems: Towards
Adaptive Tools for Global Optimization. 2nd Metaheuristics
International Conference (MIC-97), Sophia-Antipolis, France -
July 21-24, 1997.

275

[Susilo 97]

[Susilo 98]

[Sutton 88]

{Taillard 97]

[Takashina 96]

[Tanebaum 96]

[Varela 80]

[Watkins 89]

[Watkins 92]

[Wellman 96]

[White 92]

[White 96]

[White 97]

Susilo, G, Infrastructure for Advanced Network Management
based on Mobile Code, Technical Report SCE-97-10, Systems
and Computer Engineering, Carleton University, June 1997.

Susilo, G, Bieszczad, A. and Pagurek, B., Infrastructure for
Advanced Network Management based on Mobile Code, Pro-
ceedings IEEE/IFIP Network Operations and Management Sym-
posium NOMS98, New Orleans, Luisiana, February 1998.

Sutton R. S., Learning to predict by the method of temporal dif-
ferences. Machine Learning, 3(1):9-44, 1988.

Taillard E. and L. M. Gambardella, An Ant Approach for Struc-
tured Quadratic Assignment Problems. 2nd Metaheuristics Inter-
national Conference (MIC-97), Sophia-Antipolis, France, 1997.

Takashina T. and Watanabe S. The locality of information gather-
ing in multiagent system, In Proceedings of the 2nd International
Conference on Multi-agent Systems (ICMAS “96), December,
1996.

Tanenbaum A.S., Computer Networks, 3rd Edition, ISBN 0-13-
349945-6, Prentice Hall, pp. 345-373, 1996.

Varela, F. G, and Maturana, H. R., Autopoiesis and cognition:
the realization of the living. Dordrecht, Reidel. 1980 141p.

Watkins J. C. H. Learning from Delayed Rewards. PhD thesis,
King's College, Cambridge, UK, 1989.

Watkins J. C. H. and Dayan P. Q-learning. Machine Learning,
8(3):279-292, 1992.

Wellman M. P., Market-oriented programming: Some early les-
sons. In S. Clearwater (ed.), Market-Based Control: A Paradigm
for Distributed Resource Allocation. World Scientific, 1996.

White, T., and Bieszczad, A., The Expert Advisor: An Expert
System for Real Time Network Monitoring, European Confer-
ence on Artificial Intelligence, Proceedings of the Workshop on
Advances in Real Time Expert Systems Technology, August,
1992.

White T., and Ross, N., Fault Diagnosis and Network Entities in
a Next Generation Network Management System, in Proceedings
of EXPERSYS-96, Paris, France, pp. S17-522.

White T. and Ross N., An Architecture for an Alarm Correlation
Engine, Object Technology 97, Oxford, 13-16 April, 1997.

276

[White 93]

[White 98a]

[White 98b]

[White 98c]

[White 98d]

[White 99a]

[White 99b]

[White 99c¢]

[White 99d]

[Winter 97]

[Wolpert 99]

White, A., R., P., Integrating Automata with Genetic Algorithms
in order to provide Adaptive Operators, M.C.S. thesis, Carleton
University, 1993.

White T., Pagurek B. and Oppacher F., Connection Management
using Adaptive Mobile Agents, Proceedings of the International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA98), July, 1998.

White T., Bieszczad A., Pagurek B., Distributed Fault Location
in Networks Using Mobile Agents. Proceedings Intelligent
Agents for Telecommunications Applications (IATA *98), July,
1998.

White T., Pagurek B and Oppacher F., ASGA: Improving the Ant
System by Integration with Genetic Algorithms. Proceedings of
the Symposium on Genetic Algorithms (SGA '98), July, 1998.

T. White and B. Pagurek, Towards Multi-Swarm Problem Solv-
ing in Networks. In Proceedings of the Third International Con-
ference on Multi-Agent Systems (ICMAS '98), pp. 333-340, July,
1998.

White, T., Mann, J., and Smith G D., Genetic Algorithms and
Network Ring Design, Annals of Operational Research 86
(1999), pp. 347-371.

White T. and Pagurek B., Emergent Behaviour and Mobile
Agents. In Proceedings of the Workshop on Mobile Agents in
Coordination and Cooperation at Autonomous Agents '99, Seat-
tle, May Lst-5th, 1999.

White T., and Pagurek B., Leamning agents for diagnosis, Pro-
ceedings of the Pacific Rim International Multi-Agent Work-
shop, December, 1999.

White T., Pagurek B., and Bieszczad A., Network Modeling For
Management Applications Using Intelligent Mobile Agents,
Journal of Network and Systems Management, September, 1999.

Shackleton M. A. and Winter C.S. Information Chemistry. In
Proceedings of the Fourth European Conference on Artificial
Life (ECAL 97), Brighton, UK, July, 1997.

Wolpert D. H., Wheeler K. R. and Tumer K., General Principles
of Learning-based Multi-Agent Systems. In Proceedings of the

3™ Annual Conference on Autonomous Agents (AA ‘99), Seat-
tle, pp- 77-83, May, 1999.

277

[Yemini 93] Yemini, Y., The OSI Network Management Model, [EEE Com-
munication Magazine, pages 20-29, May 1993.

[Yemini 91] Yemini, Y., Goldszmidt, G. and Yemini, S., Network Manage-
ment by Delegation. In The Second International Symposium on
Integrated Network Management, Washington, DC, April 1991.

278

APPENDIX A Swarm Simulation Environment

A.1 Overview

This appendix describes the swarm simulation environment that has been built in order
to conduct experiments in multi-swarm problem solving in networks. The simulation has
been written in Smalltalk, and provides a rich graphical environment for viewing the
problem solving process. The environment has been designed with extensibility in mind;
the addition of new problem solving swarms being of primary interest. Not all user
interface components are described in this appendix, only those that relate directly to

multi-swarm problem solving are included.

279

A.2 Introduction

The main window of the simulation environment is shown in Figure 68 below. The main

7 edlh)
EFlicisimilation 5 Braws e Output i Préferencesig Expert SRS AR
Fie: [demotn] toper: [Physical J5] Sca: A
]
=il B
)
2]
=
=
]
£
B
-] @
January 8, 1999 3:15:24 pm. Design read in from text file demo1 . txt. 2 C
3

FIGURE 68. Simulation Main Window

window is the starting point for any simulation; several other dialogs may be accessed via
the pull down menu displayed at the top of the window. These dialogs and their associated

functions will be described in subsequent sections.

The anchor window consists of three main regions. The region designated A in Figure
68 consists of the name of the file from which the network was loaded, the layer of the
network being displayed and the scale at which the network is being displayed. It is
possible to simulate multiple layers of a network; for example, the physical layer and
logical network layers. However in this thesis, only the physical layer was modelled. A

graphical view of the network is displayed in Region B. User interaction with the nodes

280

and links displayed is possible. Nodes and links can be dragged within the network display
region, and popup menus are defined for each of the displayed components. A background
popup menu is also defined. These menus will not be not described here in the interests of
brevity. Finally, Region C displays a scrolling list of status messages associated with the
current session of the simulator. The beginning and end of an activity are marked with
messages being added to the status region, along with important warning or error
messages. Error indications are also associated with the display of a modal dialog that

forces user acknowledgement before the simulation session is allowed to continue.

The following sections in this appendix briefly document the main visual components of

the simulation environment.

281

A.2.1 Principal Simulation Dialogs

A.2.1.1 The Experiment Manager Dialog

Ei Experiment Manager

Connections Source Destination(s]
1niton5 ES I Y] =l n1 ¥
8nltond ni0 n10
9nltons n2 n2

1 118 nt tonB n3 n3
4 [11 n1ton? n4 n4
1 112n1tonB n5 n5
1 (13 ntton9 nb nb
{1 |14nlton8 n7 n/
4 118 n1 to n10 n3 ng
1 [19n1ton0 n9 ng
20 n4 to n10

] Protected

[bynamic Bandwidth: | 0 E

| Adaptive

&

Experiment duration: | 10000

\FAbpiz] (Cancel| |Eresie]

FIGURE 69. Experiment Manager Dialog
The Experiment Manager Dialog allows a user to set up a number of connections each of
which have a mean arrival rate and duration. A Poisson distribution is assumed for
duration and arrivals. This dialog facilitates the creation, management and evaluation of a
large number of simultaneously active connection requests and is intended to represent a

“realistic” network situation.

282

A.2.1.2 Connections Notebook

— . i
i I '} Connections notebook

Connections

1 nltans @

8 n1 to nd Agents sent: I 220

?Dn:‘ 1“:0"?8 Agents returned: l 180

11 nl ton? Start time: | 0 l

12 n1 to n8

13 n1to n9 End time: l 104 |

}g :1 :2 :?EI D Adaptive J Dynamic] Protected

19 n1 to n10 [State

20 nd to n10 O Defined O Path emerged

O Explosing @ Allocated

Route

n1 port 1 to n3 port 1
n3 port 3 to n5 port 2

FIGURE 70. Connections Notebook

The Connections Notebook allows the solution process to be monitored for a selected
connection. The number of agents sent, returned and the state of path search are displayed.
The full life cycle, from connection definition to allocation can be viewed and the path
which emerges is shown in text format in the Route section of the dialog. The Agents tab
allows the location of all agents associated with the connection to be displayed. The

Properties tab allows the properties associated with the connection to be displayed.

283

A.2.1.3 Links Notebook

B - jEditnl_1:n2_1

n10 2-n6 1 0 Propetties ||
n1_1-n3_1 Report
g_;— ng_? = 15 Pheromone
-n —
n3_3-n5 2 =) f\ \)‘
n4_1-ng 2 5 o }
nd_2-n5_1 JJ\I N _
nd_2-n8 3 0 e .
nd_3-n6_2
h5_1-nB_2] 50 100 150 200
n6_2-n9_t1 Time series data Time
n/_1-n8_3 4 05 x*
n7_2-n8_1 5 045
6 0.783333 g
6 0705 £l
7 0.6345 K
Pheromones Updating
19 n1 to nl0 @ On demand x,_
11 nlton?
14 n1 to nS i
9nltons O Periodic g
g

FIGURE 71. Links Notebook

The Links Notebook allows the solution process to be viewed from a link’s perspective.
The view shown above is the quantity of pheromone that is present on the selected link
(n1_1, n2_1) for the selected connection (nl to n10). The time series data shown in the
above figure may also be exported to Microsoft Excel for further analysis. The Report tab
displays the connections that are using the link. The properties tab displays the properties
of the link. The quality tab is to indicate the quality of service for the link. This aspect of
the link is used to inject “faults” into the network by changing g-chemical concentrations

on various network entities.
284

A.2.1.4 Nodes Notebook

I jEdit n5
Nodes
nl]
:; 0 ln5_1 -nB8_2 Properties |
n3 l nd_2-n5 1 Report]
E— Fheromane
P
nb Quality
n’/
n8
n9
35.3%
r Time scale
8 6 79
Pheromones Updating
19 n1 o 010 @ On demand date
12 n1 to n8
13 n1 to n9 O Peiiodic

¥

FIGURE 72. Nodes Notebook

The Nodes Notebook allows the solution process to be viewed from a node’s

perspective. The view shown above is the quantity of pheromone that is present on the

selected node for the selected connection (nl to nl0). The pie chart provides a graphical

view of the probability with which an agent will select a given link. The time series data

for the node may be viewed by moving the slider, the pie chart being updated to reflect the

distribution at that moment. The Report tab displays the connections that are using the

node. The properties tab displays the properties of the node. The quality tab is to indicate

the quality of service for the node. This aspect of the node is used to inject “faults” into the

network by changing q-chemical concentrations on various network entities.

285

A.2.1.5 Simulation Control

rAgent ch

=C e 4, b
Bandwidlh: Tickx[sm |
(] Adaptive [] Dynamic [Prot
] - Ant creation ch
Fi 3 of ant

Quantity of antz created
at each creation time:

rAnt ch

Q sensitivity: rs:l :
Learning Rate: '

Detection threshold: |

Random search X: |

X pheromone evaporated o 1%
at each tick- m

— Alls ' £ Aeneivie

Size of the buffer used T
in allocator send deci:iom

Allocator send X:

FIGURE 73. Simulation Control

Deallocater send X:

There are two simulation control dialogues that allow experimentation with system
parameters. These are shown above in Figure 73. These controls allow various routing and
diagnostic parameters to be adjusted in order to assess their effects upon solution quality
and speed of emergence. Parameters of particular interest are the density of routing and
diagnostic agents, the rate of production of agents and the sensitivity to various

pheromones.

286

A.2.1.6 Simulation Output

[C Gty @ Macied I M
o

T pot 1 A pure 1
nJ port 2w A2 pur T
A2 part £ 030 purt 7

*
-

i

E‘—‘-i,lﬂl’! 1259 om ad_146_1 propmries chonged

(a) Route Display

[T F]

(b) Link Utilization Output

610 110 2133 31-40 4150 5160 61-70 7180 8190
% Ll

Legend j 7 |
0-10x
10-20%
20-30%
30-40%
40-50%
50-60%
60-70%
70-80%
80-90%

NoW e !

Frequency

o -

90-100% =T =1
>100X I September 5, 1993 12.41 06 pm. nRS_1-nB_2 praperties changed. 3

I I

FIGURE 74. Qutput Displays

Figure 74a shows the route displayed for a particular connection selected from those
defined in the simulation. Figure b shows the link utilization distribution for a particular
simulation. along with an overall utilization of the links. A display showing only those

links exceeding a user-defined threshold can also be displayed.

287

APPENDIX B Syl’lthECA Implemem‘alion

B.1 Overview

This appendix describes the implementation of principal data structures that are used in
the SynthECA environment. The environment relies heavily on the implementation of the
Mobile Code Toolkit which is not described here. Considerable information on the Mobile
Code Toolkit is maintained on the WWW at URL: http://www.sce.carleton.ca/netmanage/

perpetuum.shtml.

B.2 SynthECA classes

B.2.1 ChemicalEncoding

The ChemicalEncoding class implements the chemical universe used in our
implementation. The Binary Array Chemistry of order N was used in our implementation.
The most important method in this class is the equals(ChemicalEncoding) method which

returns true if the two encodings are equal, false otherwise.

288

B.2.2 Chemical
The Chemical class implements a chemical within our environment for the Binary Array

Chemistry of order N. It has two attributes: encoding and concentration. The encoding
attribute is an instance of the ChemicalEncoding class and the concentration is a float

whose value is bounded by zero.

B.2.3 ChemicalMembrane
The ChemicalMembrane abstract class represents the interface between the agent and

the local chemical environment. This class has two attributes: encoding and
decisionFunction. The encoding attribute is an instance of the ChemicalEncoding class
and the decisionFunction is an instance of a Receiver object. The Receiver class is part of
the Mobile Code Toolkit and will not be described at length here. However, a Receiver
object is an implementation of the Delegate design pattern and consists of a delegated
object and method that are used to provide behavior not directly provided by the
delegating object. In this case, the delegated object implements the decision function, not

the membrane object.

This mechanism is used in order to have emitter and receptor decision function methods
implemented in one place -- the agent class -- rather than proliferate classes with a single

method implementing the decision function.

B.2.4 Reaction
The Reaction class is used to define the reactions that can occur between reactants,

thereby generating products. This class has five attributes: reactants, products, rate, active

289

and name. The reactants and products are instances of the Array class and these arrays
contain instances of Chemicals. Within the context of this class, the concentration
associated with the Chemical is used to describe the number of molecules of the encoding
that participates in the reaction. The rate attribute is a floating point value that determines
the rate constant for the reaction. The active attribute is a boolean that is used to switch a
reaction on and off. In some sense, it is equivalent to setting the rate attribute to zero when
the active attribute has the value false. The name of the reaction is a user friendly
description of the reaction that is intended to capture its function within the overall

framework of chemical processing provided by a Chemistry object.

B.2.5 ChemicalEnvironmentInterface
The ChemicalEnvironmentInterface implements the interface to a

ChemicalEnvironment. This interface allows a user to get, set, increment and decrement
chemical concentrations. It is implemented by the ChemicalEnvironment and

EnvironmentAccessController.

B.2.6 ChemicalEnvironment

The ChemicalEnvironment class stores the associations between chemical encodings
and their concentrations. It implements the ChemicalEnvironmentInterface, described
above. It has a single attribute, environment, an instance of Hashtable. This class
implements the mapping rules defined for the Binary Chemistry of order N and is

responsible for computing the concentration associated with a ChemicalEncoding.

290

B.2.7 ChemicalProcessor
The ChemicalProcessor class controls processing of chemical reactions within an agent.

As such, it consists of the following attributes: reactions, tick, active, env and outputs.
The reactions attribute is an instance of the Array class containing Reaction objects. The
tick attribute is an integer that determines the frequency with which the processor updates
its outputs. The env attribute is the chemical environment as perceived by the agent and is
an instance of the ChemicalEnvironment class. The outputs attribute is an instance of an

Array that, in turn, contains ChemicalMembrane instances.

B.2.8 ChemicalCommunicationInterface
The ChemicalCommunicationlnterface defines two methods used for communication

between an agent and the local chemical environment. The two methods:
onlnChange(Chemical) and onOutChange(Chemical) process chemical environmental

changes that cross the agent’s cell membrane.

B.2.9 EnvironmentAccessController
The EnvironmentAccessController class is a sub-class of VirtualManagedComponent (a

Mobile Code Toolkit class) that implements the ChemicalEnvironmentinterface. The
EnvironmentAccessController class is responsible for maintaining the concentrations of
chemicals within the chemical environmént defined for an individual node. This class has
two attributes: controller and environment. The controller attribute is an instance of the
SynthECAgent class that has the responsibility for controlling access to the environment
and can be thought of as a resident agent representing a nodal chemistry. The environment

attribute is an instance of the ChemicalEnvironment.

291

B.2.10 SynthECAgent
The SynthECAgent class is a abstract sub-class of the Mobile Code Toolkit SuperNetlet

class that implements the ChemicalCommunicationInterface. The SynthECAgent class
has the following private attributes: emitters, receptors, chemicalProcessor,
localChemicalEnvironment and agentChemicalEnvironment. The emitters and receptors
attributes are instances of the Array class that store ChemicalMembrane instances. The
chemicalProcessor attribute is an instance of the ChemicalProcessor class and is
responsible for the chemical reactions implemented within the agent. The
localChemicalEnvironment is an instance of the EnvironmentAccessController class that
permits access to the chemical information which is local to the node. The
agentChemicalEnvironment attribute is an instance of the ChemicalEnvironment, and

contains chemical information local to the agent.

Concrete sub-classes were defined for the scenarios implemented in this thesis.

292

